Preferred Repairs for Inconsistent Databases

S. Greco, C. Sirangelo, I. Trubitsyna and E. Zumpano
DEIS — Universita della Calabria
87030 Rende, Italy
{greco, sirangelo, irina, zumpah@si.deis.unical.it

Abstract

The objective of this paper is to investigate the prob-
lems related to the extensional integration of information
sources. In particular, we propose an approach for man-
aging inconsistent databases, i.e. databases violating in
tegrity constraints. The presence of inconsistent data can
be resolved by “repairing” the database, i.e. by providing
a computational mechanism that ensures obtaining consis-
tent “scenarios” of the information or by consistently an-
swer to queries posed on an inconsistent set of data. In thi
paper we consider preferences among repairs and possibl
answers by introducing a partial order among them on the i _
base of some preference criteria. More specifically, pref- tained as the result of an integration process over a set of
erences are expressed by considering polynomial functionsknOWIGdge_ bases.)) _

. . . The following example shows a typical case of inconsis-
applied to repairs and returning real numbers. The good-
ness of a repair is measured by estimating how much it vio- ney-
lates the desiderata conditions and a repair is preferrat if Example 1 Consider the database consisting of the
minimizes the value of the polynomial function used to ex-three binary relationFeaches(Professor, Course), Fac-
press the preference criteria. The main contribution ofthi ulty(Professor, Facultypnd Course(Course, Facultyyith
work consists in the proposal of a logic approach for query- the integrity constraint
ing and repairing inconsistent databases that extendsiprev V(P,C, F)[Teaches(P, C)AFaculty(P, F) > Course(C, F)]
ous works by aallowing to express and manage preference
criteria. The approach here proposed allows to express re- stating that if a professoP teaches a cours€ and P
liability on the information sources and is also suitable fo is in the facultyF’, then the cours€ must belong to the
expressing decision and optimization problems. The intro- faculty F'. Assume there are two different sources of the
duction of preference criteria strongly reduces the number databases: Dy = {Teaches(ti,c1), Teaches(tz, c2),
of feasible repairs and answers; for special classes of con- Faculty(t1, f1), Course(ci, f1)} and Dy =
straints and functions it gives a unique repair and answer. {Teaches(t1,c1), Faculty(ts, f1), Course(ca, f2)}.

“Work partially supported by a MURST grants under the prejéoRl” The two instances satisfy the constraint, but from their

and "Sistemi informatici Integrati a supporto di bench-kiag di progetti union we derive a relation which does not satisfy the
ed interventi ad innovazione tecnologica in campo agnoretitare”. The constraint. O
first author is also supported by ICAR-CNR.

1 Introduction

The problem of dealing with inconsistent information
has recently assumed additional relevance as it plays a key
role in all the areas in which duplicate information or con-
flicting information s likely to occur [2, 6, 7, 16, 18, 23,R7
In this paper we address the problem of managing inconsis-
Stent databases, i.e. databases violating integrity caingst
eThe fact that a database may be inconsistent with respect

to a set of integrity constraints is not surprising if it is-ob

The presence of inconsistent data can be resolved by “re-express preferences on them, for instance, if, in the above
pairing” the database, i.e. by providing a computational example, preferred repairs are those minimizing the num-
mechanism that ensures to obtain consistent “scenarios” ober of deletion and insertion of tuples then the regajr
the information (repairs) in an inconsistent environmeant o preferred to the repaiRs.
to consistently answer to queries posed on an inconsistent In this paper we introduce a flexible mechanism that al-
set of data. Informally, a repair for a possibly inconsis- lows specifying preference criteria so that selecting agnon
tent database is a minimal set of insert and delete opegationa set of feasible repairs the preferable ones, i.e. those bet
which makes the database consistent, whereas a consistetér conforming to the specified criteria. Preference crite-
answer is a set of tuples derived from the database, satisfy+ia introduce desiderata on how to update the inconsistent
ing all integrity constraints [3, 4, 12, 13, 25]. database in order to make it consistent and are expressed

Thus the integration of, possibly inconsistent, databasesby means of a polynomial function, namedaluation func-
must consider the possibility of constructing an integtate tion. The evaluation function “measures” the repairs with
consistent database by replacing inconsistent tuplesnFor respect to the database and allows defining a partial order
stance, for the integrated relation of the above examgk, it both among repairs and possible answers, so that allowing
possible to obtain a consistent database by i) deletingithe t the selection of the feasible repairs which result preterre
ple Teaches(tz, c2), i) deleting the tupleFaculty(ts, f1), w.rt. the evaluation function: the preferred repairs. In-
or iii) adding the tupleC'ourse(csa, f1). These three update formally a preferred repair is a repair that better satisfies
operations are repairs that make the database consiaient, bpreferences, i.e. it minimizes the value of the evaluation
one should prefer a repair with respect to an alternative one function.

For instance, one could prefer a repair which minimize the In the integration of two conflicting databases a simple
number of deletion and insertion of tuples in the relation way to remove inconsistencies consists in the definition of
Teaches and, in such a case, the second and third repairpreference criteria such as a partial order on the source in-
are preferred to the first one, or one should prefer repairsformation, or in the use of the majority criteria [19], which
minimizing the set of deletions and in such a case the thirdin the presence of conflicts gives more credit to the infor-
repair is preferred to the first two repairs. mation present in the majority of the knowledge bases.

Observe that the selection of the element which occurs
a maximum number of times in the integrated knowledge
bases is easily obtained by specializing the evaluatioc-fun
tion to compute the cardinality of the deleted atoms, since
a consistent scenario, obtained by performing the minimum
number of delete operation, surely maintains the majority
of the information which overlaps among the knowledge
bases.

The application of the majority criteria [19] in the in-
tegration phase of the above example, eliminates the tu-
ple (john, engineering, algorithms); this corresponds to
give preference to the repalt; with respect to the repair
R», i.e. we express preference for the repaired databases
which need a lesser number of updates to be consistent or
equivalently we give credit to the information which occurs
a greater number of times.

Note that, while integrity constraints can be considered
as a query which must always be true after a modification
of the database, the conditions expressed by the evaluation

Example 2 Consider the relation Teaches
(Name, Faculty, Course) with the functional depen-
dencyName — Faculty. Assume to have three different
sources for the relatioff'eaches containing, respectively,
the tuples Teaches(john, science, databases),
Teaches(john, engineering, algorithms) and
Teaches(john, science, operating_systems). The three
different source relations satisfy the functional depende
cies, but from their integration we derive the inconsistent
relation D = {(john, engineering, algorithms),
(john, science, operating_systems), (john, science,
databases)}.

The integrated relation can be repaired by applying a
minimal set of update operations. In particular it admits
two repairs: R; obtained by deleting the tuplgjohn,
engineering, algorithms) and R, obtained by delet-
ing the two tuples(john, science, databases) and

(john, science, operating_systems).

In the presence of an alternative set of repairs one could

function can be considered as a set of desiderata which ar®f P has the formd < A4, ..., A,,, whereA is an atom (the
satisfied if possible by a generic repair. The goodness ofheadof the rule) and4,, ..., A, are literals (théodyof the
a repair is measured by estimating how much the updatesule). A ground rule with an empty body is callediat
to be performed on the inconsistent database respect the Given a Datalog progran®, the Herbrand universe for
preference criteria or in other words how much the repaired P, denotedH p, is the set of all constants occurring ity
database violates them. the Herbrand Base d?, denotedBp, is the set of all possi-
The main contribution of this work consists in the defini- ble ground atoms whose predicate symbols occur snd
tion of a logic approach for querying and repairing inconsis whose arguments are elements from the Herbrand universe.
tent databases that extends previous works by also considA ground instancef a ruler in P is a rule obtained from
ering techniques to express and manage preference criteridby replacing every variabl& in r by a ground term irH p.
The approach here proposed allows to express reliability onThe set of ground instances ois denoted byyround(r);
the information sources and moreover is also suitable foraccordinglyground(P) denoteg J, . p ground(r). Anin-
expressing decision and optimization problems. Obviously terpretation/ of P is a subset oBp. A ground positive
the introduction of preference criteria reduces the numberliteral A (resp. negative literat A) is true w.r.t. an interpre-
of feasible repairs and answers, moreover for special casesation if A € I (resp. A ¢ I). A conjunction of literals
of constraints it gives a unique repair and answer. is true in an interpretatiod if all literals are true inf. A
The rest of the paper is organized as follows. In Section ground rule is true in/ if either the body conjunction is
2 we present basic definitions on logic languages (Datalog,false or the head is true ih A (Herbrand) modelM of P
disjunctive Datalog and classical negation). In Sectiore3 w is an interpretation that makes each ground instance of each
recall standard definitions on repairs and consistent aisswe rule in P true. A model M for P is minimal if there is no
and introduce preference criteria on repairs and answers. | model N for P such thatv C M.
Section 4 we present the rewriting of integrity constraints Let I be an interpretation for a prograf. Theim-
into disjunctive rules and show how preferred repairs and mediate consequence operafs(I) is defined as the set
answers are computed. Finally, in Section 5, we present ourcontaining the heads of each rulec ground(P) s.t. the

conclusions. body of r is true inI. The semantics of @ositive(i.e.
negation-free) logic prograrf is given by the unique min-
2 Basic Definitions and Datalog Extensions imal model; this minimum model coincides with the least

fixpoint T3°(0) of Tp [20]. Generally, the semantics of

In this section we introduce preliminaries on deductive logic programs with negation can be given in terms of to-
databases and integrity constraints. Integrity condsain tal stable model semantics [9] which we now briefly recall.
define restrictions on the instance of relational databases Given a progran® and an interpretatiofd, M is a to-
Deductive databases are defined by logical rules which aretal) stable modebf P if it is the minimum model of the
used to derive new knowledge starting from a given (rela- positive programP? defined as follows:P/ is obtained
tional) database. We present first the language Datalog androm ground(P) by (i) deleting all rules which have some
next two extensions: Disjunctive Datalog and Datalog with negative literal=b in their body withb € M, and (ji) re-

aggregates. moving all negative literals in the remaining rules. Logic
programs may have zero, one or several stable models. Pos-
2.1 Datalog itive programs have a unique stable model which coincides

with the minimum model [9].

We assume the existence of finite domains of constants, Gjven a progranP and two predicate symbojsandg,
variables and predicate symbols. A term is either a variablewe writep — ¢ if there exists a rule wherg occurs in the
or a constant. An atom is of the forptty, ..., ¢,) wherep head ang in the body or there exists a predicatsuch that
is a predicate symbol and, ..., are terms. A literalis — s ands — ¢. A program isstratifiedif there exists no

either an aton! or its negatiomot A. A Datalog program ryle where a predicate occurs in a negative literal in the
(or, simply, aprogram) P is a finite set of rules. Eadtule

body,q occurs in the head ang— pi.e. there is no recur- grams [9]. For any interpretatiol/, denote withP™ the
sion through negation [1]. Stratified programs have a uniqueground positive program derived fromound(P) by 1) re-
stable model which coincides with tis&ratified modelob- moving all rules that contain a negative literalt a in the
tained by partitioning the program into an ordered number body andz € M, and 2) removing all negative literals from
of suitable subprograms (called 'strata’) and computirgg th the remaining rules. An interpretatidd is a (disjunctive)

fixpoints of every stratum from the lowest one up [1]. stable model ofP if and only if M € MM(PM). For
generalP, the stable model semantics assign®tthe set
Queries SM(P) of its stable models It is well known that stable

Predicate symbols are partitioned into two distinct sets: models are minimal models (i.&M(P) C MM(P)) and
base predicategalso called EDB predicates) anttrived that for negation free programs minimal and stable model
predicates(also called IDB predicates). Base predicates semantics coincide (i.eSM(P) = MM(P)). Observe
correspond to database relations defined over a given dothat stable models are minimal models which are ‘sup-
main and they do not appear in the head of any rule whereagorted’, i.e. their atoms can be derived from the program.
derived predicates are defined by means of rules. Given a

databaseD, a predicate symbol and a progranP, D(r) Extended disjunctive databases

denotes the set oftuples inD wherea$®, denotes the pro- ~ Extended Datalogrograms extend standard Datalog pro-
gram derived from the union ¢ with the tuples inD, i.e. grams with a different form of negation, knowneassical

Pp = PU{r(t) « |t € D()}. Inthe following a tuple or strong negationwhich can also ap.pegr in the head of
t of a relationr will also be denoted as a facft). The se- rules [10, 17, 11]. An extended atom is either an atom, say

. L . A or its negation- A. An extended Datalog program is a

mantics ofPp is given by the set of its stable models by con- ¢ g prog
o) T i) set of rules of the form

sidering either their uniorppssible semantiax brave rea-
soning or their intersectiondertain semanticer cautious
reasoning. A query(is a pair(g, P) whereg is a predi-
cate symbol, called thguery goa) andP is a program. The
answer to a quer§) = (g, P) over a databasP, under the
possible (resp. certain) semantics is givenlyg) where

D' = UMESM(PD) M (resp.D" = ﬂMeSM(PD) M).

A1V---VAi < Bi,...Bn,not Byyyg,..,not B, k+n >0
whereA,, ..., A, By, ..., B,, are extended atoms. A (2-

valued) interpretatiof for an extended prograf is a pair

(T, F'y whereT andF' define a partition oB» U =5p and

-Bp = {—A|A € Bp}. An interpretation = (T, F)

is consistentf there is no atomA4 such thatA € T and

—-A € T. The semantics of an extended progrénms

2.2 Disjunctive Datalog defined by considering each negated predicate symbol, say
—p, as a new symbol syntactically different frggrand by
A (disjunctive Datalog) rule: is a clause of the form adding to the program, for each predicate symbwith ar-

ity n the constraing— p(X1, ..., X,,), (X1, ..., X)L In

ALV VA« Bi,oo, B, n0t Bt .. not B the following, for the sake of simplicity, we shall also use

wherek +m +n > 0 andAy,..., A, B,..., B, are rules whose bodies may contain disjunctions. Such rules,
atoms. The disjunctiont; V --- vV Ay is the headof r, called generalized (extended) disjunctive rules, are ased
while the conjunctioB, . . ., By, not By 1, . . ., not By, shorthands for multiple standard disjunctive rules. More

is thebodyof r. We also assume the existence of the binary SPecifically, a generalized disjunctive rule of the form
built-in predicate symbols (comparison operators) which 4,v..v 4, « (BiiV..NBim,)s . (BuiV..VBpm.)
can only be used in the body of rules.

The (model-theoretic) semantics for positive programs
P assigns toP the set of itsminimal modelsMM (P)
[21]. The more generalisjunctive stable model seman-
tics also applies to programs with (unstratified) negation
[10, 8]. Disjunctive stable model semantics generalizas st
ble model semantics, previously defined for normal pro-

denotes the set of standard rules

A V-V AL (_Bl,ila---aBn,in V5,i:1<j5<
n and 1 <i; <m;

1A rule with empty head is a constraint is satisfied only if itdp is
false

2.3 Integrity constraints (VX)[BiA---ABp,Anot Ag A---Anot A, A¢ D] which

is satisfied only if the body is false. Moreover, in some case

Database schemata contain the knowledge on the strucwe shall write the above constraint as
ture of data, i.e. they define constraints on the form the data(VX) [BiA---ABnAnot Ag A~ Anot Ay O not(p)]
must have. Integrity constraints express semantic informa E le3 The intearit —— x
tion on data, that is relationships that must hold among data x;\mp € X © |tn tegrlt)r/] (t:c;r;]s ra|:1 t() pt(b) -
in the theory and they are mainly used to validate databaseQ(_) \/. r(X)] §a es tha e. relafiolp must be con-
. tained in the union of the relationg and r. It could be

manipulations. Integrity constraints represent the ader i
. ' . . rewritten as(VX) [p(X) A not ¢(X) D r(X)] or as
tion among data and define properties which are supposed tOVX) A not ol X) A not 1(X O
be explicitly satisfied by all instances over a given databas (¥X) [p(X) A mot g(X) A not r(X) S].
schema. They are usually defined by first order rules or
by means of special notations for particular classes such a
keys and functional dependencies.

3 Preferred repairs and answers

In this section we recall the formal definition of consis-
Definition 1 An integrity constrain{or embedded depen- tent database and repair; we present a computational mech-
dency) is a formula of the first order predicate calculus of anism that ensures selecting preferred repairs and peeferr
the form: answers for inconsistent database.
(VX) [®(X) D> 32)T(Y)]

) 3.1 Preferred repairs for inconsistent databases
whereX,Y and Z are sets of variablesp and ¥ are two

conjunctions of literals such that andY are the distinct
set of variables appearing i® and ¥ respectively,”Z =
X — Y is the set of variables existentially quantified. O

In this section we introduce a polynomial function
through which expressing preferences criteria. The func-
tion introduces a partial order among repairs, so that allow
ing the evaluation of the goodness of a repair for an incon-
sistent database. Moreover we define preferred repairs as
feasible repairs that are minimal with respect to the plartia
order.

Let us first recall the formal definition of consistent datsda
and repair.

In the definition above, the conjunctidnis called thebody
and the conjunctio® the headof the integrity constraint.
The semantics of the above constraints is that for every
value of X which makes the formul&(X) true there must
be aninstance of which makesP (V) true. Most of the de-
pendencies developed in database theory are restrictesl cas
of some of the above classes [15].

In this paper we considdull (or universa) single-head
constraints, wherd is a literal or a conjunction of built-
in literals (i.e. comparison operators). Therefore, an in-
tegrity constraint is a formula of the formvX) [By A
-+« AN B, AnotA; A --- AnotA,, N ¢ DO Ay] where Definition 3 Given a (possibly inconsistent) databdsea
Ay, ..., Anm, By, ..., B, are base positive literalg, is a con- repair for D is a pair of sets of atom&™, R™) such that
junction of built-in literals, 4y is a base positive atom or 1) R*NR~ =(,2) DURT — R~ | ZC and 3) there is no
a conjunction of built-in atomsX denotes the list of all pair(S*,S~) # (RT, R~) suchthatSt™ C Rt, S~ C R~
variables appearing i1, ..., B,;; moreover the variables andD U S* — S~ | ZC. The databas® U Rt — R~ will
appearing iy, ..., A, ande, also appear B, ..., B,. be called theepaired database |

Often we shall write our constraints in a different for-
mat by moving literals from the head to the body and vice TNUS, repaired databases are consistent databases waich ar

versa. For instance, the above constraint could be rewrit-derived from the source database by means of a minimal

ten as(vX) [Bi A - ABn Ad D Ay V-~V Ay, | set of insertion and deletion of tuples. Given a refajr
or in the form of rule with empty head, calledeniat R* denotes the set of tuples which will be added to the

Definition 2 Given a databasP and a set of integrity con-
straintZC on D, we say thatD is consistenif D = ZC,
i.e. if all integrity constraints iZC are satisfied by, oth-
erwise it isinconsistent m|

database, whereds™ denotes the set of tuples 6fwhich

will be deleted. In the following, for a given repdit and a
databas®, R(D) = DUR* — R~ denotes the application
of R to D. Moreover, given a database schema DS, we
denote withD the set of all possible database instance over
DS.

Example 4 Assume we are given a databade
{p(a),p(b),q(a), q(c)} with the inclusion dependency
(VX)[p(X) D q(X)]. Disinconsistent sincg(b) D q(b)
is not satisfied. The repairs fd? are Ry = ({q(b)},0)
and R, = (0,{p(b)}) producing, respectively, the re-
paired database®;(D) = {p(a),p(b),q(a),q(c),q(b)}
andR,(D) = {p(a), a(a), a(c)}. 0

Definition 4 Given a (possibly inconsistent) databaBe
over a fixed schem®sS, and a polynomial functioryf :
(D,D) x D — R. A repair R, is preferable to a re-
pair Ry, w.r.t. the functionf, written Ry <y Ra, if
f(R1,D) < f(R2,D). ArepairR for D is said to bepre-
ferredw.r.t. the functionf if there is no repaiR’ for D such
thatR' <; R. A repaired databas®’ = DU RT — R~
is said to be greferred databasé R = (RT,R) is a
preferred repair. m|

The above functiorf will be called(repair) evaluation
functionas it is used to evaluate a rep@rwith respect to
a databas®. A preferred database minimizes the value of
the evaluation functiorf applied to the source database and
repairs. Observe that, in the above definitibrdenotes the
domain of all possible database instances whefBab)

e fi(R,D) = |R™| computing the number of inserted

atoms,

e fo(R,D) = |R~| computing the number of deleted
atoms,

e f3(R,D) = |R™| + |R*| computing the number of

deleted and inserted atoms.

As seen in Example 1, there are three repairdio?, =
(0, {Teaches(ta, c2)}), Ry = (0, {Faculty(ts, f1)}) and
R3 = ({Course(cz, f1)},0). With respect to the above
evaluation functions we have the following relations:

1. Ry <5 R3 andR» <5 Rs
2. R3 <<f2 R1 andR3 <<f2 R2

Thus, considering the minimization of the above evalua-
tion functions we have that under the functifyy Rs is the
unique preferred repair, under the functifin we have two
preferred repairsR; and R», and under the functiof all
repairs are preferred. |

Given a databas®, a set of integrity constraint&C
and an evaluation functiofi, we denote wittR(D,ZC, f)
the set of preferred repairs fdp. In the above example
R(D,IC, f1) = {R1, R2}, whereaRR(D,ZC, f») = {R3}.

Moreover, we denote withf, any constant evaluation
function (e.g. fo(R, D) = 0, the function returning the
value0). R(D,ZC, fy) denotes the set of all feasible repairs
for D as no preference is introduced.

denotes the domain of all possible database updates. Thi$-2 Preferred answers for queries over inconsis-

means that the evaluation functighcan be used to mea-

tent databases

sure any possible modification of the input databases and

not only to measure repairs, i.e. modification which make
the database consistent. In the following, for the sake of
simplicity, we only consider function which minimize the
cardinality of a set.

Example 5 Consider the database D
{Teaches(t,c1), Teaches(ta, ca), Faculty(ty, f1),

Faculty(ts, f1), Course(er, f1), Course(cs, f2)} derived
from the union of the databaséy and D, of Example 1
and the integrity constraint

V(P,C, F)[Teaches(P,C)AFaculty(P, F) D Course(C, F)]

Let R be a repair for the databage possible evaluation
functions are:

A (relational) query over a database defines a function
from the database to a relation. It can be expressed by
means of alternative equivalent languages such as reddtion
algebra, ‘safe’ relational calculus or ‘safe’ non recuesiv
Datalog [24]. In the following we shall use Datalog. Thus, a
query is a paifg, P) whereP is a safe non-recursive Data-
log program ang is a predicate symbol specifying the out-
put (derived) relation. Observe that relational queries de
fine a restricted case of disjunctive queries. The reason for
considering relational and disjunctive queries is thatyas
shall show next, relational queries over databases with con
straints can be rewritten into extended disjunctive gserie
over databases without constraints.

Definition 5 Given a databas®, a set of integrity con- 4 Managing Inconsistent Databases

straintsZC, and an evaluation functiofy an atomA is true

(resp. false) with respect taZC and f, if A belongs to all We present a technique which permits us to compute
preferred repaired databases (resp. there is no preferred r repairs and consistent answers for possibly inconsistent

paired database containir). The atoms which are neither ~databases. The technique is based on the generation of a
true nor false arendefined O disjunctive programDP(ZC) derived from the set of in-

tegrity constraint€C. The repairs for the database can be
Thus, true atoms appear in all preferred repaired generated from the stable models®P(ZC) whereas the

databases whereas undefined atoms appear in a proper suBomputation of the consistent answers of a quersP) can
set of preferred repaired databases. Given a database pe derived by considering the stable models of the program
set of integrity constraintsC and an evaluation functiof, P UDP(ZIC) over the databasB.
the application ofZC to D (underf), denoted byZC (D), Integrity constraints express semantic information over
defines three distinct sets of atoms: the set of true atomsgata, i.e. relationships that must hold among data in the the
ZCy(D)*, the set of undefined atori€ s (D)" and the set ory and they are mainly used to validate database transac-

of false atomgC;(D)~. tions. Integrity constraints represent the interactiomagn
Given a databasP), a set of integrity constraifC, an data and define properties which are supposed to be satis-
evaluation functionf and a query) = (g,P), the appli- fied by all instances over a given database schema explicitly
cation of the query) to the databas® with constraintZC They are usually defined by first order rules or by means
under the functiory is denoted by) (D, ZC, f). of special notations for particular classes such as keys and

functional dependencies. Generally, a dataliases asso-
ciated a schem®S = (Rs,ZC) which defines the inten-
tional properties of: Rs denotes the structure of the rela-
tions whereagC contains the set of integrity constraints.

Definition 6 The answer to a quer@(D,ZC, f) consists
of three sets, denoted 6§D, ZC, f)*, Q(D,ZC, f)~ and
Q(D,IC, f)¥, containing, respectively, the setsgfuples
which aretrue (i.e. belonging toQ(D') for all preferred

repaired databasd3'), false(i.e. not belonging taQ(D’) Definition 7 Let c be a universally quantified constraint of
for all preferred repaired databasB$ andundefinedi.e. the form
set of tuples which are neither true nor false). | (VX)BL Ao AByApD ALV -V A]

Example 6 Consider the integrated databases of ExampleWhereB, ..., By, Ay, ..., A, are positive atoms angd is a
2, the quenQ = (g, P) whereP consists of the following conjunction of built-in atoms. Themrlj(c) denotes the ex-
rule: q(Y) « Teaches(john,Y,Z) and the evaluation tended disjunctive rule

function f measuring the cardinality of the repairs. Thepre- - B{v..v-B,Vv A v..Vv A+

ferred answer to the que€y over the inconsistent databases (B1V By),...,(B,V B)),p,
(w.r.t. the constraint defined by the functional dependgncy (not Ay v—4AY), .., (not Ay, vV 2AL)
gives the unique resuftscience}. . whereC' denotes the atom derived froff) by replacing
Theorem 1 Given a databasé), a set of integrity con- the predicate symbei with the new symbop;. =
straint ZC, an evaluation functionf and a query@Q = Example 7 Consider the following integrity constraints:
(9,P), then 1. (VX) [p(X) D s(X) Vq(X)]

1. R(D,IC, f) C R(D,1C, fo) 2. (¥X) [a(X) > r(X)]

2. Q(D,1¢C, fo) C Q(D,TIC, f) O and the databasP containing the factg(a), p(b), s(a)

andq(a). The derived generalized extended disjunctive pro-
The above theorem states that the introduction of pref- gram is defined as follows:
erence criteria reduces the number of repairs and enlarges
the answer (i.e. reduces the set of undefined elements of thgpd(X) V82XV ga(X) = (p(X) Vpa(X)),
o (not s(X) V =sa(X)), (not ¢(X) V =ga(X))

answer). —qa(X) V ra(X) « (q(X) V qa(X)), (not r(X) V =r4(X))

The above rules can be now rewritten in standard form by Definition 8 Given a databasP and a set of integrity con-

eliminating body disjunctions. L&® be the corresponding

straint ZC over D and letting A/ be a stable model of

extended disjunctive Datalog program, the computation of pp(z¢) p,, then, R(M) = ({p(t) | pa(t) € M A p(t) &

the progran®p, derived from the union dP with the facts
in D, gives the following stable models:

My = DU {=pa(b), ~qa(a)},
My = DU {-pa(d),ra(a
Ms = D U {—qi(a), sq4(b
My =D U{rq(a),sq(d)},
Ms = D U {qa(b), ~qa(a),ra(b)},
Ms =) -
Thus, DP(ZC) denotes the set of generalized disjunc-
tive rules derived from the rewriting &fC, DP(ZC)p de-
notes the program derived from the union of the rules in
DP(ZC) with the facts inD and SM(DP(ZC)p) (resp.
MM(DP(ZIC)p)) denotes the set of stable (resp. minimal)
models ofDP(ZC) p. Recall that every stable modelis con-
sistent, according to the definition of consistent set gimen
Section 2, since it cannot contain two atoms of the fotm
and— A.
A functional dependency{ — Y over a relatiorp can
be expressed by a formula of the form

VXY, Z,UV)p(X,Y,U)Ap(X,Z,V)DY = Z]

whereX,Y, Z U,V are lists of variables and, Y, Z may
be empty lists. Arninclusion dependendy of the form

VX, Y)[p1(X1) A o App(Xyn) D q(Y)]

whereXy, ..., X, andY are lists of variablesand C X, U
LU X,

4.1 Computing preferred database repairs

D}, {p(t) | ~pa(t) € M A p(t) € D}). =

Theorem 2 [12]
Given a databas® and a set of integrity constrainf& on
D, then

1. (Soundness) for every stable modélof DP(ZC)p,
R(M) is a repair forD;

2. (Completeness) for every database repéirfor D
there exists a stable mod&l for DP(ZC)p such that
S =R(M). O

Example 8 Consider the database of Example 4. The
rewriting of the integrity constraintvX)[p(X) D ¢(X)]
produces the disjunctive rule

r:opg(X)Vaa(X) + (p(X)Vpa(X)),

(not ¢(X) V —qa(X)).
which can be rewritten in the simpler form

r' i mpa(X) Vaa(X) < p(X),not ga(X).

since the predicates; and—q,; do not appear in the head
of any rule. The progran®p, whereP is the program con-
sisting of the disjunctive ruleg’ andD is the input database,
has two stable modeld/; = D U { —p4(b)} and M,
DU{ q4(b)}. The derived repairs afe(M;) = ({q(b)},0)
andR(Mz) = (0,{p(b)}) corresponding, respectively, to
the insertion of;(b) and the deletion gf(b).

Theorem 3
Let D be a databaselC a set of functional dependencies

Every stable model can be used to define a possible reand f an evaluation function measuring the cardinality of
pair for the database by interpreting new derived atoms (de-repairs. Then,

noted by the subscript “d”) as insertions and deletions-of tu
ples. Thus, if a stable modé&l contains two atoms p,(t)
(derived atom) angh(¢) (base atom) we deduce that the
atomp(t) violates some constraint and, therefore, it must
be deleted. Analogously, i/ contains the derived atoms
pq(t) and does not contaip(t) (i.e. p(t) is not in the
database) we deduce that the atpft) should be inserted

in the database. We now formalize the definition of repaired

database.

1. (Soundness) for every stable modélof DP(ZC)p
with minimum cardinalityR (M) is a preferred repair
(w.rt. f) for D;

2. (Completeness) for every preferred database refair
for D there exists a stable modél for DP(ZC)p
with minimal cardinality such thaR (M) = S.

3. R(M) can be computed in polynomial time. |

Theorem 4 Q(D,IC,)t =

Let D be a database[C a set of full inclusion dependen- {g4(t) € D| AM € PSM;((P U LP(IC))p) s.t.~ga(t) € M }U
cies andf an evaluation function measuring the number of {¢(t) ¢ D |VM € PSM;((P U LP(ZC))p) s.t. ga(t) € M },
insertions (resp. deletions). Then

Q(D,ZIC, f)* =
1. there is a unique preferred (w.r.f) repair S and there {9(t) € D|3IM1, M3 € PSM;((P U LP(ZC))p) s.t.
exists a unique stable mod&f such thatR (M) = S; —ga(t) € M1 ,—ga(t) ¢ M2} U

D | 3My, M. S PuULP(IC +.

2. M+ =0 (resp. M~ = 0): {9(t) D|3M1, M2 € PSM;((PULP(ZIC))p) st
94(t) € My, g4(t) & Ma }.

3. R(M) can be computed in polynomial time. a .]
whereas the set of atoms which are neither true nor unde-

4.2 Computing preferred answers fined can be assumed to be false.

Theorem 5
We now consider the problem of computing a preferred Let D be a databasey) = (g, P) a query,f a polynomial
(consistent) answers without modifying the (possibly imco evaluation function and’ a repaired database preferred
sistent) database. We assume that tuples, contained in théw.r.t. f). Then
database or implied by the constraints, mayrbe, falseor 1. each atomd € Q(D,ZC, f)* belongs to the stable
undefined model ofP s (soundness)
Let D be a databaseZC a set of integrity con-

}) _) 2. each atomd € Q(D,ZC, f)~ does not belong to the
straints andf an evaluation function, then we denote with

stable model oP p (completeness). |
PSM(DP(ZC)p) the set of preferred stable models of
DP(ZC)p with respect to the functiofi(R (M), D). Example 9 Consider the database of Example 5, the in-
From the results of Section 3.1 we derive tegrity constraint:
TCH(D)* = Y(P,C, F)|[Teaches(P,C)AFaculty(P, F) D Course(C, F)]
{p(t) € D| AM € PSM;(LP(IC)p) s.t. ~pa(t) € M } U
{(p(H) & D | VM € PSM,(LP(IC)p) s.t. palt) € M}, and the evaluation functiong;(R,D) = |R"| and
f2(R,D) = |R~| computing respectively the number of
ICp(D)™ = inserted and deleted atoms. The prog@@mhas three sta-
{p(t) ¢ D| AM € PSM;(LP(IC)p) s.t.pa(t) € M } U ble models:M = D U {—Teaches(tz,c2)}, M2 = D U
{p(t) € D|YM € PSM;(LP(ZC)p) s.t. —pa(t) € M }, {=Facultyq(ts, 1)} and M3 = D U {Courseq(ca, f1)}.
Considering the evaluation functiofy (R,D) = |R™|
Ic (D) = the set of preferred models consists df; and Ms;
{p(t) € D[3My, Mz € PSM(LP(IC)p) 5. therefore, the atoms which are true and undefined
~pa(t) € My, ~pa(t) € Mz} U are: ICys (D)t = {Teaches(ti,c1), Faculty(ti, f1),
{p(t) ¢ D |3M1, Ms € PSM;(LP(IC)p) 5. Course(cy, f1),Course(cs, fo)} and ICy (D) =
pa(t) € My, pa(t) & Ms }. {Teaches(tz, ca), Faculty(ts, f1)}. Considering the
evaluation functionfa(R, D) = |R™|, M3 is the unique

Observe thatthe sef€’ ; (D)™, ZC s (D)~ andZC ¢ (D)
are disjoint and thafC;(D)* U ZC D)~ defines a set of
consistent atoms. We are now in the position to introduce
the computation of (preferred) consistent answer.

The preferred consistent answer for the quély =
(g, P) over the databasP under constraintéC is as fol-
lows:

preferred model; thus, the set of undefined atoms is
empty, whereas the set of true atomsZi€s, (D)* =
{Teaches(ti,c1), Teaches(ta,cs), Faculty(ty, f1),
Faculty(ts, f1), Course(c, f1), Course(ca, f2),
Course(ca, f1)}. The answer to the quer§l’eaches,)

is {(t1,c1)} under the evaluation functionf; and
{(t1,c1), (t2, c2)} under the evaluation functiof,. The
answer to the queryCourse,0) is {(c1, f1), (c2, f2)},

under the functionf, and { (c1, f1), (c2, f2), (c2, f1)}
under the functiory,. O

5 Conclusions

In this paper we have proposed a logic program-
ming based framework for managing possibly inconsistent
databases. The main contribution of this work consists in
the definition of a logic approach for querying and repair-

ing inconsistent databases that extends previous works by [13]
also considering techniques to express and manage prefer-
ences among repairs and possible answers. Preferenee crite
ria can be introduced to specify desiderata on how to update [14]
the inconsistent database in order to make it consistent and

are expressed by meansefaluation functionsi.e. poly-
nomial functions that are applied to repairs and return real
numbers. The evaluation function defines a partial order

both among repairs and possible answer, thus it represents

a flexible mechanism for selecting among a set of feasible
repairs those better conforming to the specified criterige T

goodness of a repair is measured by estimating how much it

violates the desiderata conditions and a repair is “pretgrr

if it minimizes the value of the polynomial function used to
express the preference criteria. A further important ofara
teristic related to the introduction of preference craed
the reduction of feasible repairs and answers, which let, fo
special cases of constraints, to unique repair and answer.

References

[1] Abiteboul S., Hull R., Vianu VFoundations of Databases

Addison-Wesley, 1994.
[2] Argaval, S., Keller, A. M., Wiederhold, G., Saraswat, K.

Flexible Relation: an Approach for Integrating Data from
Multiple, Possibly Inconsistent Databas&SDE, 1995.

[3] Arenas, M., Bertossi, L., Chomicki, J., Consistent
query Answers in inconsistent databade@DS pp. 68—
79, 1999.

[4] Arenas, M., Bertossi, L., Chomicki, J., Specifying and
Querying Database repairs using Logic Programs with Ex-
ceptionsFQAS pp. 27-41, 2000.

Baral, C., Kraus, S., Minker, J., Combining Multiple
Knowledge BasesIKDE, 3(2), pp. 208-220, 1991.

Bry, F., Query Answering in Information System with In-
tegrity Constraints]FIP WG 11.5 Working Conf. on In-
tegrity and Control in Inform. Systerh997.

Dung, P. M., Integrating Data from Possibly Inconsisten
Database<Coopl$S pp. 58-65, 1996.

(5]
[6]

[7]

10

[8] Eiter, T., Gottlob, G., Mannila, H., Disjunctive Datao

TODS 22(3), pp- 364-418, 1997.

Gelfond, M., Lifschitz, V. The Stable Model Semantics fo

Logic Programming|CLP, pp. 1070-1080, 1988.

Gelfond, M., Lifschitz, V., Classical Negation in Lagi

Programs and Disjunctive Databas@$GC, No. 9, pp.

365-385, 1991.

Greco, S., Sacca, D., Negative Logic PrograMAaCLP,

pp. 480-497, 1990.

Greco, S., Zumpano, E., Querying Inconsistent Dambas

LPAR pp. 308-325, 2000.

Greco, G., Greco, S., Zumpano, E., A Logic Programming

Approach to the Integration, Repairing and Querying of

Inconsistent Databasd€LP, 2001.

Grant, J., Subrahmanian, V. S., Reasoning in Incomsist

Knowledge Bases KDE,7(1), pp. 177-189, 1995.

Kanellakis, P. C., Elements of Relational Databaseofye

Handbook of Theoretical Computer Scienvel. 2, J. van

Leewen (ed.), North-Holland, 1991.

Kifer, M., Li, A., On the Semantics of Rule-Based Expert

Systems with Uncertaintynt. Conf. on Database Theory

pp. 102-11, 1988.

Kowalski, R. A., Sadri, F., Logic Programs with Excep-

tions.NGC, 9(3/4), pp. 387-400, 1991.

Lin, J., A Semantics for Reasoning Consistently in the

Presence of Inconsistendy, 86(1), pp. 75-95, 1996.

Lin, J., and Mendelzon, A. O., Knowledge Base Merging

by Majority, in Dynamic Worlds: From the Frame Problem

to Knowledge ManagemerR. Pareschi and B. Fronhoefer

(eds.), Kluwer, 1999.

[20] Lloyd, J., Foundation of Logic ProgrammingSpinger-
Verlag, 1987.

[21] Minker, J., On Indefinite Data Bases and the Closed World

Assumptiong-th Conf. on Automated Deductigop. 292—

308, 1982.

Sakama, C., Inoue, K., Priorized logic programming and

its application to commonsense reasonifig.No. 123, pp.

185-222, 2000.

Subrahmanian, V. S., Amalgamating Knowledge Bases.

ACM ToDS 19(2), pp. 291-331, 1994.

Uliman, J. K., Principles of Database and Knowledge-

Base System¥ol. 1, Computer Science Press, 1988.

Wijsen, J., Condensed representation of databasérsepa

for consistent query answering;DT, pp. 378-393, 2003.

Wang, X, You, J. H., Yuan, L. Y., Nonmonotonic reason-

ing by monotonic inferences with priority conditioriroc.

Int. Workshop on Nonmonotonic Extensions of Logic Pro-

gramming pp. 91-109, 1996.

Yan, L.L., Ozsu, M.T., Conflict Tolerant Queries in Augo

Coopl§ 1999; pp. 279-290.

Zang, Y., Foo, N., Answer sets for prioritized logic pro

grams.(ILPS pp. 69-83, 1997.

(9]

(10]

(11]

(12]

(15]

(16]

(17]
(18]

(19]

(22]

(23]
(24]
(25]

(26]

(27]

(28]

