
Preferred Repairs for Inconsistent Databases�
S. Greco, C. Sirangelo, I. Trubitsyna and E. Zumpano

DEIS – Università della Calabria

87030 Rende, Italyfgreco, sirangelo, irina, zumpanog@si.deis.unical.it

Abstract

The objective of this paper is to investigate the prob-

lems related to the extensional integration of information

sources. In particular, we propose an approach for man-

aging inconsistent databases, i.e. databases violating in-

tegrity constraints. The presence of inconsistent data can

be resolved by “repairing” the database, i.e. by providing

a computational mechanism that ensures obtaining consis-

tent “scenarios” of the information or by consistently an-

swer to queries posed on an inconsistent set of data. In this

paper we consider preferences among repairs and possible

answers by introducing a partial order among them on the

base of some preference criteria. More specifically, pref-

erences are expressed by considering polynomial functions

applied to repairs and returning real numbers. The good-

ness of a repair is measured by estimating how much it vio-

lates the desiderata conditions and a repair is preferred ifit

minimizes the value of the polynomial function used to ex-

press the preference criteria. The main contribution of this

work consists in the proposal of a logic approach for query-

ing and repairing inconsistent databases that extends previ-

ous works by aallowing to express and manage preference

criteria. The approach here proposed allows to express re-

liability on the information sources and is also suitable for

expressing decision and optimization problems. The intro-

duction of preference criteria strongly reduces the number

of feasible repairs and answers; for special classes of con-

straints and functions it gives a unique repair and answer.�Work partially supported by a MURST grants under the projects “D2I”

and ”Sistemi informatici Integrati a supporto di bench-marking di progetti

ed interventi ad innovazione tecnologica in campo agro-alimentare”. The

first author is also supported by ICAR-CNR.

1 Introduction

The problem of dealing with inconsistent information

has recently assumed additional relevance as it plays a key

role in all the areas in which duplicate information or con-

flicting information is likely to occur [2, 6, 7, 16, 18, 23, 27].

In this paper we address the problem of managing inconsis-

tent databases, i.e. databases violating integrity constraints.

The fact that a database may be inconsistent with respect

to a set of integrity constraints is not surprising if it is ob-

tained as the result of an integration process over a set of

knowledge bases.

The following example shows a typical case of inconsis-

tency.

Example 1 Consider the database consisting of the
three binary relationsTeaches(Professor, Course), Fac-
ulty(Professor, Faculty)andCourse(Course, Faculty)with
the integrity constraint8(P;C; F)[Teahes(P;C)^Faulty(P; F) � Course(C;F) ℄
stating that if a professorP teaches a courseC andP

is in the facultyF , then the courseC must belong to the

faculty F . Assume there are two different sources of the

databases:D1 = fTeahes(t1; 1); T eahes(t2; 2);Faulty(t1; f1); Course(1; f1)g and D2 =fTeahes(t1; 1); Faulty(t2; f1); Course(2; f2)g.
The two instances satisfy the constraint, but from their

union we derive a relation which does not satisfy the

constraint. 2
1

The presence of inconsistent data can be resolved by “re-

pairing” the database, i.e. by providing a computational

mechanism that ensures to obtain consistent “scenarios” of

the information (repairs) in an inconsistent environment or

to consistently answer to queries posed on an inconsistent

set of data. Informally, a repair for a possibly inconsis-

tent database is a minimal set of insert and delete operations

which makes the database consistent, whereas a consistent

answer is a set of tuples derived from the database, satisfy-

ing all integrity constraints [3, 4, 12, 13, 25].

Thus the integration of, possibly inconsistent, databases

must consider the possibility of constructing an integrated

consistent database by replacing inconsistent tuples. Forin-

stance, for the integrated relation of the above example, itis

possible to obtain a consistent database by i) deleting the tu-

pleTeahes(t2; 2), ii) deleting the tupleFaulty(t2; f1),
or iii) adding the tupleCourse(2; f1). These three update

operations are repairs that make the database consistent, but

one should prefer a repair with respect to an alternative one.

For instance, one could prefer a repair which minimize the

number of deletion and insertion of tuples in the relationTeahes and, in such a case, the second and third repair

are preferred to the first one, or one should prefer repairs

minimizing the set of deletions and in such a case the third

repair is preferred to the first two repairs.

Example 2 Consider the relation Teahes(Name; Faulty; Course) with the functional depen-

dencyName ! Faulty. Assume to have three different

sources for the relationTeahes containing, respectively,

the tuples Teahes(john; siene; databases);T eahes(john; engineering; algorithms) andTeahes(john; siene; operating systems). The three

different source relations satisfy the functional dependen-

cies, but from their integration we derive the inconsistent

relation D = f(john; engineering; algorithms);(john; siene; operating systems); (john; siene;databases)g:
The integrated relation can be repaired by applying a

minimal set of update operations. In particular it admits

two repairs: R1 obtained by deleting the tuple(john;engineering; algorithms) andR2 obtained by delet-

ing the two tuples(john; siene; databases) and(john; siene; operating systems). 2
In the presence of an alternative set of repairs one could

express preferences on them, for instance, if, in the above

example, preferred repairs are those minimizing the num-

ber of deletion and insertion of tuples then the repairR1
preferred to the repairR2.

In this paper we introduce a flexible mechanism that al-

lows specifying preference criteria so that selecting among

a set of feasible repairs the preferable ones, i.e. those bet-

ter conforming to the specified criteria. Preference crite-

ria introduce desiderata on how to update the inconsistent

database in order to make it consistent and are expressed

by means of a polynomial function, namedevaluation func-

tion. The evaluation function “measures” the repairs with

respect to the database and allows defining a partial order

both among repairs and possible answers, so that allowing

the selection of the feasible repairs which result preferred

w.r.t. the evaluation function: the preferred repairs. In-

formally a preferred repair is a repair that better satisfies

preferences, i.e. it minimizes the value of the evaluation

function.

In the integration of two conflicting databases a simple

way to remove inconsistencies consists in the definition of

preference criteria such as a partial order on the source in-

formation, or in the use of the majority criteria [19], which

in the presence of conflicts gives more credit to the infor-

mation present in the majority of the knowledge bases.

Observe that the selection of the element which occurs

a maximum number of times in the integrated knowledge

bases is easily obtained by specializing the evaluation func-

tion to compute the cardinality of the deleted atoms, since

a consistent scenario, obtained by performing the minimum

number of delete operation, surely maintains the majority

of the information which overlaps among the knowledge

bases.

The application of the majority criteria [19] in the in-

tegration phase of the above example, eliminates the tu-

ple (john; engineering; algorithms); this corresponds to

give preference to the repairR1 with respect to the repairR2, i.e. we express preference for the repaired databases

which need a lesser number of updates to be consistent or

equivalently we give credit to the information which occurs

a greater number of times.

Note that, while integrity constraints can be considered

as a query which must always be true after a modification

of the database, the conditions expressed by the evaluation

2

function can be considered as a set of desiderata which are

satisfied if possible by a generic repair. The goodness of

a repair is measured by estimating how much the updates

to be performed on the inconsistent database respect the

preference criteria or in other words how much the repaired

database violates them.

The main contribution of this work consists in the defini-

tion of a logic approach for querying and repairing inconsis-

tent databases that extends previous works by also consid-

ering techniques to express and manage preference criteria.

The approach here proposed allows to express reliability on

the information sources and moreover is also suitable for

expressing decision and optimization problems. Obviously

the introduction of preference criteria reduces the number

of feasible repairs and answers, moreover for special cases

of constraints it gives a unique repair and answer.

The rest of the paper is organized as follows. In Section

2 we present basic definitions on logic languages (Datalog,

disjunctive Datalog and classical negation). In Section 3 we

recall standard definitions on repairs and consistent answers

and introduce preference criteria on repairs and answers. In

Section 4 we present the rewriting of integrity constraints

into disjunctive rules and show how preferred repairs and

answers are computed. Finally, in Section 5, we present our

conclusions.

2 Basic Definitions and Datalog Extensions

In this section we introduce preliminaries on deductive

databases and integrity constraints. Integrity constraints

define restrictions on the instance of relational databases.

Deductive databases are defined by logical rules which are

used to derive new knowledge starting from a given (rela-

tional) database. We present first the language Datalog and

next two extensions: Disjunctive Datalog and Datalog with

aggregates.

2.1 Datalog

We assume the existence of finite domains of constants,

variables and predicate symbols. A term is either a variable

or a constant. An atom is of the formp(t1; ...; tn) wherep
is a predicate symbol andt1; ...; tn are terms. A literal is

either an atomA or its negationnotA. A Datalog program

(or, simply, aprogram) P is a finite set of rules. Eachrule

of P has the formA A1; ...; Am, whereA is an atom (the

headof the rule) andA1; ...; Am are literals (thebodyof the

rule). A ground rule with an empty body is called afact.

Given a Datalog programP , the Herbrand universe forP , denotedHP , is the set of all constants occurring inP ;

the Herbrand Base ofP , denotedBP , is the set of all possi-

ble ground atoms whose predicate symbols occur inP and

whose arguments are elements from the Herbrand universe.

A ground instanceof a ruler in P is a rule obtained fromr
by replacing every variableX in r by a ground term inHP .

The set of ground instances ofr is denoted byground(r);
accordingly,ground(P) denotes

Sr2P ground(r). An in-

terpretationI of P is a subset ofBP . A ground positive

literalA (resp. negative literal:A) is true w.r.t. an interpre-

tationI if A 2 I (resp.A 62 I). A conjunction of literals

is true in an interpretationI if all literals are true inI . A

ground rule is true inI if either the body conjunction is

false or the head is true inI . A (Herbrand) modelM of P
is an interpretation that makes each ground instance of each

rule inP true. A modelM for P is minimal if there is no

modelN for P such thatN �M .

Let I be an interpretation for a programP . The im-

mediate consequence operatorTP (I) is defined as the set

containing the heads of each ruler 2 ground(P) s.t. the

body of r is true in I . The semantics of apositive (i.e.

negation-free) logic programP is given by the unique min-

imal model; this minimum model coincides with the least

fixpoint T1P (;) of TP [20]. Generally, the semantics of

logic programs with negation can be given in terms of to-

tal stable model semantics [9] which we now briefly recall.

Given a programP and an interpretationM , M is a (to-

tal) stable modelof P if it is the minimum model of the

positive programPM defined as follows:PM is obtained

from ground(P) by (i) deleting all rules which have some

negative literal:b in their body withb 2 M , and (ii) re-

moving all negative literals in the remaining rules. Logic

programs may have zero, one or several stable models. Pos-

itive programs have a unique stable model which coincides

with the minimum model [9].

Given a programP and two predicate symbolsp andq,
we writep ! q if there exists a rule whereq occurs in the

head andp in the body or there exists a predicates such thatp ! s ands ! q. A program isstratifiedif there exists no

rule where a predicatep occurs in a negative literal in the

3

body,q occurs in the head andq ! p i.e. there is no recur-

sion through negation [1]. Stratified programs have a unique

stable model which coincides with thestratified model, ob-

tained by partitioning the program into an ordered number

of suitable subprograms (called ’strata’) and computing the

fixpoints of every stratum from the lowest one up [1].

Queries
Predicate symbols are partitioned into two distinct sets:

base predicates(also called EDB predicates) andderived

predicates(also called IDB predicates). Base predicates

correspond to database relations defined over a given do-

main and they do not appear in the head of any rule whereas

derived predicates are defined by means of rules. Given a

databaseD, a predicate symbolr and a programP, D(r)
denotes the set ofr-tuples inD whereasPD denotes the pro-

gram derived from the union ofP with the tuples inD, i.e.PD = P [fr(t) j t 2 D(r)g. In the following a tuplet of a relationr will also be denoted as a factr(t). The se-

mantics ofPD is given by the set of its stable models by con-

sidering either their union (possible semanticsor brave rea-

soning) or their intersection (certain semanticsor cautious

reasoning). A queryQ is a pair(g;P) whereg is a predi-

cate symbol, called thequery goal, andP is a program. The

answer to a queryQ = (g;P) over a databaseD, under the

possible (resp. certain) semantics is given byD0(g) whereD0 = SM2SM(PD)M (resp.D0 = TM2SM(PD)M).

2.2 Disjunctive Datalog

A (disjunctive Datalog) ruler is a clause of the formA1 _ � � � _Ak B1; : : : ; Bm; not Bm+1 ; : : : ; not Bn
wherek + m + n > 0 andA1; : : : ; Ak; B1; : : : ; Bn are

atoms. The disjunctionA1 _ � � � _ Ak is the headof r,
while the conjunctionB1; : : : ; Bm;not Bm+1 ; : : : ;not Bn
is thebodyof r. We also assume the existence of the binary

built-in predicate symbols (comparison operators) which

can only be used in the body of rules.

The (model-theoretic) semantics for positive programsP assigns toP the set of itsminimal modelsMM(P)
[21]. The more generaldisjunctive stable model seman-

tics also applies to programs with (unstratified) negation

[10, 8]. Disjunctive stable model semantics generalizes sta-

ble model semantics, previously defined for normal pro-

grams [9]. For any interpretationM , denote withPM the

ground positive program derived fromground(P) by 1) re-

moving all rules that contain a negative literalnot a in the

body anda 2M , and 2) removing all negative literals from

the remaining rules. An interpretationM is a (disjunctive)

stable model ofP if and only if M 2 MM(PM). For

generalP, the stable model semantics assigns toP the setSM(P) of its stable models. It is well known that stable

models are minimal models (i.e.SM(P) �MM(P)) and

that for negation free programs minimal and stable model

semantics coincide (i.e.SM(P) = MM(P)). Observe

that stable models are minimal models which are ‘sup-

ported’, i.e. their atoms can be derived from the program.

Extended disjunctive databases
Extended Datalogprograms extend standard Datalog pro-
grams with a different form of negation, known asclassical
or strong negation, which can also appear in the head of
rules [10, 17, 11]. An extended atom is either an atom, sayA or its negation:A. An extended Datalog program is a
set of rules of the formA1_� � �_Ak B1; ...; Bm; not Bm+1 ; ...; not Bn k+n > 0

whereA1; ...; Ak; B1; ...; Bn are extended atoms. A (2-

valued) interpretationI for an extended programP is a pairhT; F i whereT andF define a partition ofBP [:BP and:BP = f:AjA 2 BPg. An interpretationI = hT; F i
is consistentif there is no atomA such thatA 2 T and:A 2 T . The semantics of an extended programP is

defined by considering each negated predicate symbol, say:p, as a new symbol syntactically different fromp and by

adding to the program, for each predicate symbolp with ar-

ity n the constraint p(X1; ...; Xn);:p(X1; ...; Xn)1. In

the following, for the sake of simplicity, we shall also use

rules whose bodies may contain disjunctions. Such rules,

called generalized (extended) disjunctive rules, are usedas

shorthands for multiple standard disjunctive rules. More

specifically, a generalized disjunctive rule of the formA1_ ..._Ak (B1;1_ ..._B1;m1); ...; (Bn;1_ ..._Bn;mn)
denotes the set of standard rulesA1 _ � � � _Ak B1;i1 ; ...; Bn;in 8j; i : 1 � j �n and 1 � ij � mj

1A rule with empty head is a constraint is satisfied only if its body is

false.

4

2.3 Integrity constraints

Database schemata contain the knowledge on the struc-

ture of data, i.e. they define constraints on the form the data

must have. Integrity constraints express semantic informa-

tion on data, that is relationships that must hold among data

in the theory and they are mainly used to validate database

manipulations. Integrity constraints represent the interac-

tion among data and define properties which are supposed to

be explicitly satisfied by all instances over a given database

schema. They are usually defined by first order rules or

by means of special notations for particular classes such as

keys and functional dependencies.

Definition 1 An integrity constraint(or embedded depen-

dency) is a formula of the first order predicate calculus of

the form: (8X) [�(X) � (9Z)	(Y) ℄
whereX;Y andZ are sets of variables,� and	 are two

conjunctions of literals such thatX andY are the distinct

set of variables appearing in� and	 respectively,Z =X � Y is the set of variables existentially quantified.2
In the definition above, the conjunction� is called thebody

and the conjunction	 theheadof the integrity constraint.

The semantics of the above constraints is that for every

value ofX which makes the formula�(X) true there must

be an instance ofZ which makes	(Y) true. Most of the de-

pendencies developed in database theory are restricted cases

of some of the above classes [15].

In this paper we considerfull (or universal) single-head

constraints, where	 is a literal or a conjunction of built-

in literals (i.e. comparison operators). Therefore, an in-

tegrity constraint is a formula of the form:(8X) [B1 ^� � � ^ Bn ^ notA1 ^ � � � ^ notAm ^ � � A0 ℄ whereA1; ...; Am; B1; ...; Bn are base positive literals,� is a con-

junction of built-in literals,A0 is a base positive atom or

a conjunction of built-in atoms,X denotes the list of all

variables appearing inB1; ...; Bn; moreover the variables

appearing inA0; ...; Am and�, also appear inB1; ...; Bn.

Often we shall write our constraints in a different for-

mat by moving literals from the head to the body and vice

versa. For instance, the above constraint could be rewrit-

ten as(8X) [B1 ^ � � � ^ Bn ^ � � A0 _ � � � _ Am ℄
or in the form of rule with empty head, calleddenial:

(8X) [B1^� � �^Bn^not A0 ^� � �^not Am^� � ℄ which

is satisfied only if the body is false. Moreover, in some case

we shall write the above constraint as(8X) [B1 ^ � � � ^Bn ^not A0 ^ � � � ^not Am � not(') ℄
Example 3 The integrity constraint(8X) [p(X) �q(X) _ r(X) ℄ states that the relationp must be con-

tained in the union of the relationsq and r. It could be

rewritten as(8X) [p(X) ^ not q(X) � r(X) ℄ or as(8X) [p(X) ^ not q(X) ^ not r(X) � ℄. 2
3 Preferred repairs and answers

In this section we recall the formal definition of consis-

tent database and repair; we present a computational mech-

anism that ensures selecting preferred repairs and preferred

answers for inconsistent database.

3.1 Preferred repairs for inconsistent databases

In this section we introduce a polynomial function

through which expressing preferences criteria. The func-

tion introduces a partial order among repairs, so that allow-

ing the evaluation of the goodness of a repair for an incon-

sistent database. Moreover we define preferred repairs as

feasible repairs that are minimal with respect to the partial

order.

Let us first recall the formal definition of consistent database

and repair.

Definition 2 Given a databaseD and a set of integrity con-

straintIC onD, we say thatD is consistentif D j= IC,
i.e. if all integrity constraints inIC are satisfied byD, oth-

erwise it isinconsistent. 2
Definition 3 Given a (possibly inconsistent) databaseD, a

repair for D is a pair of sets of atoms(R+; R�) such that

1)R+\R� = ;, 2)D[R+�R� j= IC and 3) there is no

pair(S+; S�) 6= (R+; R�) such thatS+ � R+,S� � R�
andD [S+�S� j= IC. The databaseD[R+�R� will

be called therepaired database. 2
Thus, repaired databases are consistent databases which are

derived from the source database by means of a minimal

set of insertion and deletion of tuples. Given a repairR,R+ denotes the set of tuples which will be added to the

5

database, whereasR� denotes the set of tuples ofD which

will be deleted. In the following, for a given repairR and a

databaseD,R(D) = D[R+�R� denotes the application

of R to D. Moreover, given a database schema DS, we

denote withD the set of all possible database instance over

DS.

Example 4 Assume we are given a databaseD =fp(a); p(b); q(a); q()g with the inclusion dependency(8X) [p(X) � q(X) ℄. D is inconsistent sincep(b) � q(b)
is not satisfied. The repairs forD areR1 = (fq(b)g; ;)
and R2 = (;; fp(b)g) producing, respectively, the re-

paired databasesR1(D) = fp(a); p(b); q(a); q(); q(b)g
andR2(D) = fp(a); q(a); q()g. 2
Definition 4 Given a (possibly inconsistent) databaseD
over a fixed schemaDS , and a polynomial functionf :(D;D) � D ! <. A repair R1 is preferable to a re-

pair R2, w.r.t. the functionf , written R1 �f R2, iff(R1; D) � f(R2; D). A repairR for D is said to bepre-

ferredw.r.t. the functionf if there is no repairR0 forD such

thatR0 �f R. A repaired databaseD0 = D [R+ � R�
is said to be apreferred databaseif R = (R+; R�) is a

preferred repair. 2
The above functionf will be called(repair) evaluation

functionas it is used to evaluate a repairR with respect to

a databaseD. A preferred database minimizes the value of

the evaluation functionf applied to the source database and

repairs. Observe that, in the above definition,D denotes the

domain of all possible database instances whereas(D;D)
denotes the domain of all possible database updates. This

means that the evaluation functionf can be used to mea-

sure any possible modification of the input databases and

not only to measure repairs, i.e. modification which make

the database consistent. In the following, for the sake of

simplicity, we only consider function which minimize the

cardinality of a set.

Example 5 Consider the database D =fTeahes(t1; 1); T eahes(t2; 2); Faulty(t1; f1);Faulty(t2; f1); Course(1; f1); Course(2; f2)g derived
from the union of the databasesD1 andD2 of Example 1
and the integrity constraint8(P;C; F)[Teahes(P;C)^Faulty(P; F) � Course(C;F) ℄
Let R be a repair for the databaseD, possible evaluation

functions are:

� f1(R;D) = jR+j computing the number of inserted

atoms,� f2(R;D) = jR�j computing the number of deleted

atoms,� f3(R;D) = jR�j + jR+j computing the number of

deleted and inserted atoms.

As seen in Example 1, there are three repairs forD: R1 =(;; fTeahes(t2; 2)g), R2 = (;; fFaulty(t2; f1)g) andR3 = (fCourse(2; f1)g; ;). With respect to the above

evaluation functions we have the following relations:

1. R1 �f1 R3 andR2 �f1 R3
2. R3 �f2 R1 andR3 �f2 R2

Thus, considering the minimization of the above evalua-

tion functions we have that under the functionf2, R3 is the

unique preferred repair, under the functionf1, we have two

preferred repairs:R1 andR2, and under the functionf3 all

repairs are preferred. 2
Given a databaseD, a set of integrity constraintsIC

and an evaluation functionf , we denote withR(D; IC; f)
the set of preferred repairs forD. In the above example

R(D; IC; f1) = fR1; R2g, whereasR(D; IC; f2) = fR3g.
Moreover, we denote withf0 any constant evaluation

function (e.g. f0(R;D) = 0, the function returning the

value0). R(D; IC; f0) denotes the set of all feasible repairs

for D as no preference is introduced.

3.2 Preferred answers for queries over inconsis-
tent databases

A (relational) query over a database defines a function

from the database to a relation. It can be expressed by

means of alternative equivalent languages such as relational

algebra, ‘safe’ relational calculus or ‘safe’ non recursive

Datalog [24]. In the following we shall use Datalog. Thus, a

query is a pair(g;P) whereP is a safe non-recursive Data-

log program andg is a predicate symbol specifying the out-

put (derived) relation. Observe that relational queries de-

fine a restricted case of disjunctive queries. The reason for

considering relational and disjunctive queries is that, aswe

shall show next, relational queries over databases with con-

straints can be rewritten into extended disjunctive queries

over databases without constraints.

6

Definition 5 Given a databaseD, a set of integrity con-

straintsIC, and an evaluation functionf , an atomA is true

(resp. false) with respect toIC andf , if A belongs to all

preferred repaired databases (resp. there is no preferred re-

paired database containingA). The atoms which are neither

true nor false areundefined. 2
Thus, true atoms appear in all preferred repaired

databases whereas undefined atoms appear in a proper sub-

set of preferred repaired databases. Given a databaseD, a

set of integrity constraintsIC and an evaluation functionf ,

the application ofIC to D (underf), denoted byICf (D),
defines three distinct sets of atoms: the set of true atomsICf (D)+, the set of undefined atomsICf (D)u and the set

of false atomsICf (D)�.

Given a databaseD, a set of integrity constraintIC, an

evaluation functionf and a queryQ = (g;P), the appli-

cation of the queryQ to the databaseD with constraintIC
under the functionf is denoted byQ(D; IC; f).
Definition 6 The answer to a queryQ(D; IC; f) consists

of three sets, denoted asQ(D; IC; f)+, Q(D; IC; f)� andQ(D; IC; f)u, containing, respectively, the sets ofg-tuples

which aretrue (i.e. belonging toQ(D0) for all preferred

repaired databasesD0), false(i.e. not belonging toQ(D0)
for all preferred repaired databasesD0) andundefined(i.e.

set of tuples which are neither true nor false). 2
Example 6 Consider the integrated databases of Example

2, the queryQ = (q; P) whereP consists of the following

rule: q(Y) Teahes(john; Y; Z) and the evaluation

functionf measuring the cardinality of the repairs. The pre-

ferred answer to the queryQ over the inconsistent databases

(w.r.t. the constraint defined by the functional dependency),

gives the unique resultfsieneg. 2
Theorem 1 Given a databaseD, a set of integrity con-
straint IC, an evaluation functionf and a queryQ =(g;P), then

1. R(D; IC; f) � R(D; IC; f0)
2. Q(D; IC; f0) � Q(D; IC; f) 2
The above theorem states that the introduction of pref-

erence criteria reduces the number of repairs and enlarges

the answer (i.e. reduces the set of undefined elements of the

answer).

4 Managing Inconsistent Databases

We present a technique which permits us to compute

repairs and consistent answers for possibly inconsistent

databases. The technique is based on the generation of a

disjunctive programDP(IC) derived from the set of in-

tegrity constraintsIC. The repairs for the database can be

generated from the stable models ofDP(IC) whereas the

computation of the consistent answers of a query(g;P) can

be derived by considering the stable models of the programP [DP(IC) over the databaseD.

Integrity constraints express semantic information over

data, i.e. relationships that must hold among data in the the-

ory and they are mainly used to validate database transac-

tions. Integrity constraints represent the interaction among

data and define properties which are supposed to be satis-

fied by all instances over a given database schema explicitly.

They are usually defined by first order rules or by means

of special notations for particular classes such as keys and

functional dependencies. Generally, a databaseD has asso-

ciated a schemaDS = hRs; ICi which defines the inten-

tional properties ofD: Rs denotes the structure of the rela-

tions whereasIC contains the set of integrity constraints.

Definition 7 Let be a universally quantified constraint of

the form(8X)[B1 ^ ::: ^ Bn ^ ' � A1 _ � � � _ Am ℄
whereB1; :::; Bn; A1; :::; An are positive atoms and' is a

conjunction of built-in atoms. Then,dj() denotes the ex-

tended disjunctive rule:B01 _ ::: _ :B0n _ A01 _ ::: _ A0m (B1 _ B01); :::; (Bn _ B0n); ';(not A1 _ :A01); :::; (not Am _ :A0m)
whereC 0i denotes the atom derived fromCi by replacing

the predicate symbolp with the new symbolpd. 2
Example 7 Consider the following integrity constraints:

1. (8X) [p(X) � s(X) _ q(X) ℄
2. (8X) [q(X) � r(X) ℄
and the databaseD containing the factsp(a); p(b); s(a)

andq(a). The derived generalized extended disjunctive pro-

gram is defined as follows::pd(X) _ sd(X) _ qd(X) (p(X) _ pd(X));(not s(X) _ :sd (X)); (not q(X) _ :qd (X)):qd(X) _ rd(X) (q(X) _ qd(X)); (not r(X) _ :rd (X))
7

The above rules can be now rewritten in standard form by
eliminating body disjunctions. LetP be the corresponding
extended disjunctive Datalog program, the computation of
the programPD, derived from the union ofP with the facts
in D, gives the following stable models:M1 = D [f:pd(b);:qd(a)g;M2 = D [f:pd(b); rd(a)g;M3 = D [f:qd(a); sd(b)g;M4 = D [frd(a); sd(b)g;M5 = D [fqd(b);:qd(a); rd(b)g;M6 = D [fqd(b); rd(a); rd(b)g: 2

Thus,DP(IC) denotes the set of generalized disjunc-

tive rules derived from the rewriting ofIC, DP(IC)D de-

notes the program derived from the union of the rules inDP(IC) with the facts inD andSM(DP(IC)D) (resp.MM(DP(IC)D)) denotes the set of stable (resp. minimal)

models ofDP(IC)D. Recall that every stable model is con-

sistent, according to the definition of consistent set givenin

Section 2, since it cannot contain two atoms of the formA
and:A.

A functional dependencyX ! Y over a relationp can

be expressed by a formula of the form(8(X;Y; Z; U; V))[p(X;Y; U) ^ p(X;Z; V) � Y = Z ℄
whereX;Y; Z; U; V are lists of variables andX;Y; Z may

be empty lists. Aninclusion dependencyis of the form(8(X;Y))[p1(X1) ^ ::: ^ pn(Xn) � q(Y) ℄
whereX1; ...; Xn andY are lists of variables andY � X1[::: [Xn.

4.1 Computing preferred database repairs

Every stable model can be used to define a possible re-

pair for the database by interpreting new derived atoms (de-

noted by the subscript “d”) as insertions and deletions of tu-

ples. Thus, if a stable modelM contains two atoms: pd(t)
(derived atom) andp(t) (base atom) we deduce that the

atomp(t) violates some constraint and, therefore, it must

be deleted. Analogously, ifM contains the derived atomspd(t) and does not containp(t) (i.e. p(t) is not in the

database) we deduce that the atomp(t) should be inserted

in the database. We now formalize the definition of repaired

database.

Definition 8 Given a databaseD and a set of integrity con-

straint IC over D and lettingM be a stable model ofDP(IC)D, then,R(M) = (fp(t) j pd(t) 2 M ^ p(t) 62Dg; fp(t) j :pd(t) 2M ^ p(t) 2 Dg). 2
Theorem 2 [12]

Given a databaseD and a set of integrity constraintsIC onD, then

1. (Soundness) for every stable modelM of DP(IC)D ,R(M) is a repair forD;

2. (Completeness) for every database repairS for D
there exists a stable modelM for DP(IC)D such thatS = R(M). 2

Example 8 Consider the database of Example 4. The

rewriting of the integrity constraint(8X)[p(X) � q(X) ℄
produces the disjunctive ruler : :pd(X) _ qd(X) (p(X) _ pd(X));(not q(X) _ :qd (X)):
which can be rewritten in the simpler formr0 : :pd(X) _ qd(X) p(X);not qd (X):
since the predicatespd and:qd do not appear in the head

of any rule. The programPD, whereP is the program con-

sisting of the disjunctive ruler0 andD is the input database,

has two stable modelsM1 = D [f :pd(b)g andM2 =D[f qd(b)g. The derived repairs areR(M1) = (fq(b)g; ;)
andR(M2) = (;; fp(b)g) corresponding, respectively, to

the insertion ofq(b) and the deletion ofp(b).
Theorem 3

LetD be a database,IC a set of functional dependencies

andf an evaluation function measuring the cardinality of

repairs. Then,

1. (Soundness) for every stable modelM of DP(IC)D
with minimum cardinality,R(M) is a preferred repair

(w.r.t. f) for D;

2. (Completeness) for every preferred database repairS
for D there exists a stable modelM for DP(IC)D
with minimal cardinality such thatR(M) = S.

3. R(M) can be computed in polynomial time. 2
8

Theorem 4

LetD be a database,IC a set of full inclusion dependen-

cies andf an evaluation function measuring the number of

insertions (resp. deletions). Then

1. there is a unique preferred (w.r.t.f) repairS and there

exists a unique stable modelM such thatR(M) = S;

2. M+ = ; (resp.M� = ;);
3. R(M) can be computed in polynomial time. 2

4.2 Computing preferred answers

We now consider the problem of computing a preferred

(consistent) answers without modifying the (possibly incon-

sistent) database. We assume that tuples, contained in the

database or implied by the constraints, may betrue, falseor

undefined.

Let D be a database,IC a set of integrity con-

straints andf an evaluation function, then we denote withPSMf (DP(IC)D) the set of preferred stable models ofDP(IC)D with respect to the functionf(R(M); D).
From the results of Section 3.1 we deriveICf (D)+ =f p(t) 2 D j 6 9M 2 PSMf (LP(IC)D) s.t. :pd(t) 2M g [f p(t) 62 D j 8M 2 PSMf (LP(IC)D) s.t. pd(t) 2M g,ICf (D)� =f p(t) 62 D j 6 9M 2 PSMf (LP(IC)D) s.t. pd(t) 2M g [f p(t) 2 D j 8M 2 PSMf (LP(IC)D) s.t. :pd(t) 2M g,ICf (D)u =fp(t) 2 D j 9M1;M2 2 PSMf (LP(IC)D) s.t.:pd(t) 2M1 ;:pd(t) 62M2 g [fp(t) 62 D j 9M1;M2 2 PSMf (LP(IC)D) s.t.pd(t) 2M1 ; pd(t) 62M2 g.

Observe that the setsICf (D)+, ICf (D)� andICf (D)u
are disjoint and thatICf (D)+ [IC(fD)� defines a set of

consistent atoms. We are now in the position to introduce

the computation of (preferred) consistent answer.

The preferred consistent answer for the queryQ =(g;P) over the databaseD under constraintsIC is as fol-

lows:

Q(D;IC; f)+ =fg(t) 2 D j 6 9M 2 PSMf ((P [LP(IC))D) s.t.:gd(t) 2M g[fg(t) 62 D j 8M 2 PSMf ((P [LP(IC))D) s.t. gd(t) 2M g,Q(D;IC; f)u =f g(t) 2 D j 9M1;M2 2 PSMf ((P [LP(IC))D) s.t.:gd(t) 2M1 ;:gd(t) 62M2 g [f g(t) 62 D j 9M1;M2 2 PSMf ((P [LP(IC))D) s.t.gd(t) 2M1 ; gd(t) 62M2 g.

whereas the set of atoms which are neither true nor unde-

fined can be assumed to be false.

Theorem 5

LetD be a database,Q = (g;P) a query,f a polynomial

evaluation function andD0 a repaired database preferred

(w.r.t. f). Then

1. each atomA 2 Q(D; IC; f)+ belongs to the stable

model ofPD0 (soundness)

2. each atomA 2 Q(D; IC; f)� does not belong to the

stable model ofPD0 (completeness). 2
Example 9 Consider the database of Example 5, the in-
tegrity constraint:8(P;C; F)[Teahes(P;C)^Faulty(P; F) � Course(C;F) ℄
and the evaluation functionsf1(R;D) = jR+j andf2(R;D) = jR�j computing respectively the number of

inserted and deleted atoms. The programPD has three sta-

ble models:M1 = D [f:Teahesd(t2; 2)g, M2 = D [f:Faultyd(t2; f1)g andM3 = D [fCoursed(2; f1)g.
Considering the evaluation functionf1(R;D) = jR+j
the set of preferred models consists ofM1 and M2;
therefore, the atoms which are true and undefined

are: ICf1(D)+ = fTeahes(t1; 1); Faulty(t1; f1);Course(1; f1); Course(2; f2)g and ICf1(D)u =fTeahes(t2; 2); Faulty(t2; f1)g. Considering the

evaluation functionf2(R;D) = jR�j, M3 is the unique

preferred model; thus, the set of undefined atoms is

empty, whereas the set of true atoms isICf2(D)+ =fTeahes(t1; 1); T eahes(t2; 2); Faulty(t1; f1);Faulty(t2; f1); Course(1; f1); Course(2; f2);Course(2; f1)g. The answer to the query(Teahes; ;)
is f(t1; 1)g under the evaluation functionf1 andf(t1; 1); (t2; 2)g under the evaluation functionf2. The

answer to the query(Course; ;) is f(1; f1); (2; f2)g,
9

under the functionf1 and f (1; f1); (2; f2); (2; f1)g
under the functionf2. 2
5 Conclusions

In this paper we have proposed a logic program-

ming based framework for managing possibly inconsistent

databases. The main contribution of this work consists in

the definition of a logic approach for querying and repair-

ing inconsistent databases that extends previous works by

also considering techniques to express and manage prefer-

ences among repairs and possible answers. Preference crite-

ria can be introduced to specify desiderata on how to update

the inconsistent database in order to make it consistent and

are expressed by means ofevaluation functions, i.e. poly-

nomial functions that are applied to repairs and return real

numbers. The evaluation function defines a partial order

both among repairs and possible answer, thus it represents

a flexible mechanism for selecting among a set of feasible

repairs those better conforming to the specified criteria. The

goodness of a repair is measured by estimating how much it

violates the desiderata conditions and a repair is “preferred”

if it minimizes the value of the polynomial function used to

express the preference criteria. A further important charac-

teristic related to the introduction of preference criteria is

the reduction of feasible repairs and answers, which let, for

special cases of constraints, to unique repair and answer.

References

[1] Abiteboul S., Hull R., Vianu V.Foundations of Databases.

Addison-Wesley, 1994.
[2] Argaval, S., Keller, A. M., Wiederhold, G., Saraswat, K.,

Flexible Relation: an Approach for Integrating Data from

Multiple, Possibly Inconsistent Databases.ICDE, 1995.
[3] Arenas, M., Bertossi, L., Chomicki, J., Consistent

query Answers in inconsistent databases.PODS, pp. 68–

79, 1999.
[4] Arenas, M., Bertossi, L., Chomicki, J., Specifying and

Querying Database repairs using Logic Programs with Ex-

ceptions.FQAS, pp. 27-41, 2000.
[5] Baral, C., Kraus, S., Minker, J., Combining Multiple

Knowledge Bases.TKDE, 3(2), pp. 208-220, 1991.
[6] Bry, F., Query Answering in Information System with In-

tegrity Constraints,IFIP WG 11.5 Working Conf. on In-

tegrity and Control in Inform. System, 1997.
[7] Dung, P. M., Integrating Data from Possibly Inconsistent

Databases.CoopIS, pp. 58-65, 1996.

[8] Eiter, T., Gottlob, G., Mannila, H., Disjunctive Datalog.

TODS, 22(3), pp. 364–418, 1997.
[9] Gelfond, M., Lifschitz, V. The Stable Model Semantics for

Logic Programming,ICLP, pp. 1070–1080, 1988.
[10] Gelfond, M., Lifschitz, V., Classical Negation in Logic

Programs and Disjunctive Databases,NGC, No. 9, pp.

365–385, 1991.
[11] Greco, S., Saccà, D., Negative Logic Programs.NACLP,

pp. 480-497, 1990.
[12] Greco, S., Zumpano, E., Querying Inconsistent Database

LPAR, pp. 308-325, 2000.
[13] Greco, G., Greco, S., Zumpano, E., A Logic Programming

Approach to the Integration, Repairing and Querying of

Inconsistent Databases.ICLP, 2001.
[14] Grant, J., Subrahmanian, V. S., Reasoning in Inconsistent

Knowledge Bases,TKDE,7(1), pp. 177-189, 1995.
[15] Kanellakis, P. C., Elements of Relational Database Theory.

Handbook of Theoretical Computer Science, Vol. 2, J. van

Leewen (ed.), North-Holland, 1991.
[16] Kifer, M., Li, A., On the Semantics of Rule-Based Expert

Systems with Uncertainty.Int. Conf. on Database Theory

pp. 102-11, 1988.
[17] Kowalski, R. A., Sadri, F., Logic Programs with Excep-

tions.NGC, 9(3/4), pp. 387-400, 1991.
[18] Lin, J., A Semantics for Reasoning Consistently in the

Presence of Inconsistency.AI, 86(1), pp. 75-95, 1996.
[19] Lin, J., and Mendelzon, A. O., Knowledge Base Merging

by Majority, inDynamic Worlds: From the Frame Problem

to Knowledge Management, R. Pareschi and B. Fronhoefer

(eds.), Kluwer, 1999.
[20] Lloyd, J., Foundation of Logic Programming. Spinger-

Verlag, 1987.
[21] Minker, J., On Indefinite Data Bases and the Closed World

Assumption,6-th Conf. on Automated Deduction, pp. 292–

308, 1982.
[22] Sakama, C., Inoue, K., Priorized logic programming and

its application to commonsense reasoning.AI, No. 123, pp.

185-222, 2000.
[23] Subrahmanian, V. S., Amalgamating Knowledge Bases.

ACM ToDS, 19(2), pp. 291-331, 1994.
[24] Ullman, J. K., Principles of Database and Knowledge-

Base Systems, Vol. 1, Computer Science Press, 1988.
[25] Wijsen, J., Condensed representation of database repairs

for consistent query answering,ICDT, pp. 378-393, 2003.
[26] Wang, X, You, J. H., Yuan, L. Y., Nonmonotonic reason-

ing by monotonic inferences with priority conditions.Proc.

Int. Workshop on Nonmonotonic Extensions of Logic Pro-

gramming. pp. 91-109, 1996.
[27] Yan, L.L., Ozsu, M.T., Conflict Tolerant Queries in Aurora.

CoopIS, 1999; pp. 279–290.
[28] Zang, Y., Foo, N., Answer sets for prioritized logic pro-

grams.(ILPS, pp. 69-83, 1997.

10

