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Abstract. We propose an extension of the Applied Pi–calculus by in-
troducing nondeterministic and probabilistic choice operators. The se-
mantics of the resulting model, in which probability and nondetermin-
ism are combined, is given by Segala’s Probabilistic Automata driven by
schedulers which resolve the nondeterministic choice among the probabil-
ity distributions over target states. Notions of static and observational
equivalence are given for the enriched calculus. In order to model the
possible interaction of a process with its surrounding environment a la-
beled semantics is given together with a notion of weak bisimulation
which is shown to coincide with the observational equivalence. Finally,
we prove that results in the probabilistic framework are preserved in a
purely nondeterministic setting.

1 Introduction

Security protocols are a critical element of the infrastructures needed for secure
communication and processing information. Most security protocols are quite
simple if only their length is considered. However, the properties they are sup-
posed to ensure are extremely subtle, hence it is hard to get protocols correct just
by informal reasoning. The history of cryptography and security protocols has a
lot of examples where weaknesses of supposedly correct algorithms or protocols
were discovered even years later. Thus, security protocols are excellent candi-
dates for rigorous formal analysis. They are critical components of distributed
security, are very easy to express and very difficult to evaluate by hand.

The use of formal methods for modeling and analyzing cryptographic proto-
cols is now well-established. After the seminal paper by Dolev and Yao [9], which
introduced a simple and intuitive description for cryptographic protocols, many
alternative definitions have been proposed on the basis of several approaches,
ranging from modal logics to process algebras.

Probabilistic models are nowadays widely used in the design and verification
of complex systems in order to quantify unreliable or unpredictable behaviour
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in security, performance and reliability analysis. Probability is taken into ac-
count when analyzing quantitative security properties (measuring, in a sense,
the security level of the protocol) or when dealing with probabilistic protocols.

In [1], Abadi and Fournet introduce the Applied Pi–calculus, an extension of
the Pi–calculus [15] with functions and equations allowing to treat messages not
only as atomic names, but also as more complex terms constructed from names
and functions. Such an extension gives rise to an important interaction between
the new construct and value–passing communication. Applications to security
are immediate, since the calculus allows to model unforgeable capabilities. More-
over, the Applied Pi–calculus permits a general and systematic development of
syntax, operational semantics, equivalences and proof techniques.

It has been remarked that the Applied Pi–calculus, thanks to its explicit
substitutions, is similar to Concurrent Constraint calculi like CCP [20], the ρ–
calculus [17] and the CC–pi calculus [4].

Bisimulation relations [14] are well–established behavioural equivalences and
are now widely used for the verification of properties of computer systems. Ac-
tually, a property can be verified by assessing the bisimilarity of the considered
system with a specification one knows to enjoy the property. Moreover, bisimu-
lations can sometimes be verified automatically thanks to successful implemen-
tations of verification tools like, e.g., the Concurrency Workbench [6] or the
Mobility Workbench [23]. It is also extremely important for bisimulations to be
congruences in order to account on compositional behavioural equivalences.

Contribution. In this paper we introduce an extension of the Applied Pi–
calculus, called Probabilistic Applied Pi–calculus (PAPi for short), where both
nondeterministic and probabilistic choices are taken into account. The semantics
of the resulting model is given by Segala’s Probabilistic Automata [21] driven
by schedulers which resolve the nondeterministic choice among the probability
distributions over target states (see [22]).

For the enriched calculus, we propose a notion of static equivalence (inher-
ited from the Applied Pi–calculus) and a notion of probabilistic observational
congruence. We also give a labeled semantics for modeling the interaction of a
process with its surrounding environment. We derive a notion of weak bisimula-
tion and show that it is a congruence relation coinciding with the observational
equivalence defined for the unlabeled semantics. Finally, abstracting away from
probabilities, we prove that results holding in the probabilistic version of the
calculus are preserved within a purely nondeterministic framework.

As an application, we use PAPi to model and analyze the 1-out-of-2 oblivi-
ous transfer protocol given in [10]. Such a protocol makes use of cryptographic
operations and randomization to achieve fairness in information exchange.

2 Preliminaries

In this section we recall some preliminary notions about terms, equational the-
ories and probability distributions.
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Terms. A signature Σ = {(f1, a1), . . . , (fn, an)} consists of a finite set of func-
tion symbols fi each with an arity ai. A function with arity 0 denotes a constant
symbol. Given a signature Σ, and infinite set of names and variables, the set of
terms is defined by the grammar:

M,N ::= a, b, c, . . .
∣

∣ x, y, z, . . .
∣

∣ f(M1, . . . ,Ml)

where M,N are terms, a, b, c are names, x, y, z are variables and f(M1, . . . ,Ml)
denotes function application with (f, l) ∈ Σ. With T we denote the set of terms.
A term is called ground when it does not contain free variables and we use TG

to denote the set of ground terms. Metavariables u, v range over both names
and variables. Tuples u1, . . . , ul and M1, . . . ,Ml are abbreviated to ũ and M̃ ,
respectively.

As in [1], we rely on a sort system for terms. It may include a set of base
types, such as Integer, Key, etc., or simply a universal base type Data. In addition,
if S is a sort, then Channel(S) is the sort of those channels that convey messages
of sort S. Variables and names can have any sort. We would use a, and c as
channel names, s and k as names of some base type, and m and n as names of
any sort. For simplicity, function symbols take arguments and produce results
of base types only. In the following of the paper we always assume that terms
are well-sorted and that substitutions preserve sorts.

Equational Theories. Given a signature Σ, we equip it with an equational
theory E. An equational theory is a congruence over terms closed under substi-
tutions of terms for variables (see [16, 8, 11]). We require this equational theory
to be also closed under one-to-one substitutions on names. We use the standard
notation Σ ⊢M =E N when the equation M = N is in the theory E of Σ, and
Σ 6⊢M =E N for the negation of Σ ⊢M =E N .

In [1] one may found several examples of equational theories for the modeling
of different kinds of cryptographic applications such as pairing, symmetric and
asymmetric encryption, hashing, probabilistic encryption (modeled in a nonde-
terministic sense), signatures and XOR. We recall just some of them.

Algebraic data types such as pairs and lists could be defined by equipping a
signatureΣ with the binary function symbol pair and the unary function symbols
fst and snd, with equations fst(pair(x, y)) = x and snd(pair(x, y)) = y.

Now, the equational theory for algebraic data types consists of these equa-
tions and all the ones obtained by reflexivity, symmetry and transitivity and
by substituting terms for variables. The sort system should enforce that fst
and snd are applied only to pairs (alternatively a boolean function recogniz-
ing pairs may be added). Equations can be added to describe particular be-
haviours. For example, a constant symbol wrong can be considered such that
fst(M) = snd(M) = wrong for appropriate ground terms M which are not pairs.
In the following we use the abbreviations (M,N) for pair(M,N) and (L,M,N)
for pair(pair(L,M), N).
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A one-way hash function can be represented as a unary function symbol h
with no equations. The one-wayness of h is modeled by the absence of an inverse
while the fact that h is collision-free results from h(M) = h(N) only for M = N .

Symmetric cryptography (shared-key cryptography), is modeled via binary
function symbols enc and dec for encryption and decryption with equation
dec(enc(x, y), y) = x, where x represents the plaintext and y the key.

Asymmetric encryption can be modeled introducing two unary function sym-
bols pk and sk for generating the public and the secret keys form a seed with
the equation dec(enc(x, pk(y)), sk(y)) = x.

Sometimes, it may be useful to assume that encrypted messages come with
sufficient redundancy such that decryption with a wrong key is evident. We may
incorporate this property by adding equations dec(M,N) = wrong for all ground
terms M and N such that M 6= enc(L,N) for all L.

Probability Measures. A discrete probability measure over a set X is a func-
tion µ : 2X → [0, 1] such that µ(X) = 1 and for each countable family {Xi} of
pairwise disjoint elements of 2X , µ(∪iXi) =

∑

i µ(Xi). We adopt the convenient
abuse of notation µ(x) for µ({x}). Let us denote by D(X) the set of discrete
probability measures over X . Given an element x ∈ X , we denote by δx the
Dirac measure on x, namely, the probability measure µ such that µ(x) = 1.

Given two probability measures µ1, µ2 and a real number p ∈ [0, 1], we define
the convex combination µ1 +p µ2 to be the probability measure µ such that for
each set Y ∈ 2X , µ(Y ) = p · µ1(Y ) + (1 − p) · µ2(Y ).

Recall that any discrete probability measure is the countable linear combi-
nation

∑

x.µ(x) 6=0 µ(x) · δx.

3 The Probabilistic Applied Pi Calculus

In this section we introduce the Probabilistic Applied Pi–calculus (PAPi).

3.1 Syntax

The grammar of PAPi processes is obtained by extending the one for the Applied
Pi–calculus with a nondeterministic (+) and a probabilistic (⊕p) choice operator:

P,Q ::= 0
∣

∣ u〈M〉.P
∣

∣ u(x).P
∣

∣ P+Q
∣

∣ P⊕pQ
∣

∣

P |Q
∣

∣ !P
∣

∣ νn.P
∣

∣ if M = N then P else Q

The null process 0 does nothing; u〈M〉.P outputs the term M on channel u
and then behaves like P ; u(x).P is ready to perform an input on channel u,
then to behave like P with the actual received message replacing the formal
parameter x; P +Q denotes a process which may behave either like P or Q;
P⊕pQ behaves like P with probability p, like Q with probability 1− p; P |Q is
the parallel composition of P and Q; the replication !P behaves as an infinite
number of copies of P running in parallel; νn.P generates a fresh private name
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n and then behaves like P ; if M = N then P else Q is the usual conditional
process, it behaves like P if M = N and like Q otherwise. Note that M = N
represents equality (i.e. with respect to some equational theory) rather than
syntactic identity. We may omit a process when it is equal to 0.

As for the Applied Pi–calculus, we extend plain processes with active substi-
tutions :

A,B ::= P
∣

∣ νn.A
∣

∣ νx.A
∣

∣ A |B
∣

∣ {M/x}

where P is a plain process. We denote with A the set of extended processes.
We write {M/x} for the active substitution that replaces the variable x with
the term M . The substitution {M/x} is like let x = M in..., with the ability
to float and to apply to any process that comes in contact with it. By applying
a restriction νx.({M/x} |P ) we obtain exactly let x = M in P . Intuitively, a
substitution {M/x} denotes either a static public information known to every
participant of the protocol, or it may appear when the term M has been sent
to the environment, and the environment may not contain the atomic names
appearing in M ; in this situation, the variable x is just a way to refer to M . We
write {M1/x1, . . . ,Ml/xl} for the parallel substitutions {M1/x1} | . . . | {Ml/xl}.
We denote substitutions by σ, the image of a variable x according to σ as xσ and
the result of applying σ to the free variables of a term T as Tσ. In the following
we identify the empty frame and the null process 0.

Extending the sort system for terms, we rely on a sort system for extended
processes. This should enforce that M and N are of the same sort in the condi-
tional expression, that u has sort Channel(S) for some S in the input and output
expressions, and that x and M have the corresponding sort S in those expres-
sions. As done before, we omit the details of the sort system, and we just assume
that extended processes are well-sorted.

Names and variables have scopes which are delimited by restrictions and by
inputs. As usual, we denote with fv(A) and fn(A) the free variables and names
of A which do not occur within the scope of any binder νx and u(x). With bv(A)
and bn(A) we denote the bound variables and names of A, respectively.

An extended process is closed when every variable is either bound or de-
fined by an active substitution. With AC we denote the set of closed extended
processes. We may use the abbreviation νũ for the (possibly empty) series of
pairwise-distinct binders νu1.νu2 . . . νul.

Intuitively, we may see extended processes as plain processes extended with a
context for the interpretation of their variables. As usual, an evaluation context is
an expression (an extended process) with a hole. Formally, an evaluation context
C[ ] is defined by the following grammar:

C[ ] ::= �
∣

∣ νn.C[ ]
∣

∣ νx.C[ ]
∣

∣ A |C[ ]
∣

∣ C[ ] |A

where A ∈ A is an extended process. A context C[ ] closes A when C[A] is
closed.

A frame is an extended process built up from 0 and active substitutions
by parallel composition and restriction. The domain dom(ϕ) of a frame ϕ is
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the set of variables that ϕ exports (those variables x for which ϕ has an active
substitution {M/x} not under a restriction on x). We assume all substitutions
in a frame to be cycle-free, and that there is at most one substitution for each
variable (and exactly one when the variable is restricted).

A frame can be viewed as an approximation of an extended process A that
accounts for the static knowledge exposed by A to its environment, but not for
A’s dynamic behaviour. Given a probabilistic extended process A, with ϕ(A) we
denote the frame obtained from A by replacing every plain process embedded
in A with 0. For example, given the process A = (P⊕pQ) | {M/x} | {N/x}, we
have that ϕ(A) = 0 | {M/x} | {N/x}. The domain dom(A) of A is the domain of
its frame ϕ(A); namely, dom(A) = dom(ϕ(A)).

3.2 Semantics

Structural congruence (≡) is the smallest equivalence relation on extended pro-
cesses that is closed (i) by α-conversion on both names and variables, (ii) by
application of evaluation contexts, and such that:

(Par-0) A ≡ A | 0 (Par-C) A |B ≡ B |A

(Par-A) A | (B |C) ≡ (A |B) |C (Repl) !P ≡ P | !P

(New-0) νn.0 ≡ 0 (New-C) νu.νv.A ≡ νv.νu.A

(New-Par) A | νu.B ≡ νu.(A |B) if u 6∈ fv(A) ∪ fn(A)

(Alias) νx.{M/x} ≡ 0 (Subst) {M/x} |A ≡ {M/x} |A{M/x}

(Rewrite) {M/x} ≡ {N/x} if Σ ⊢ M =E N

Rules for parallel composition and restriction are standard. Alias enables the
introduction of an arbitrary active substitution, Subst describes the application
of an active substitution to a process in contact with it, and Rewrite deals
with equational term rewriting. As pointed out in [1], Alias and Subst yield
A{M/x} ≡ νx.({M/x} |A) for x 6∈ fv(M).

We let µ range over distributions over the classes of extended processes de-
fined by the structural congruence relation. Namely, µ : 2A/≡ → [0, 1]. In the
following we abbreviate µ([B]) with µ(B), where [B] is the equivalence class of
B up to structural congruence ≡.

The internal probabilistic reduction A −→ µ, which describes a transition that
leaves from A and leads to a probability distribution µ, is the smallest relation
satisfying the following axioms:

(Id) P −→ δP (Comm) a〈x〉.P | a(x).Q −→ δP | Q (NdBran)
P −→ µ

P +Q −→ µ

(PrBran)
P −→ µ1 Q −→ µ2

P⊕pQ −→ µ1 +p µ2
(Then) if M = M then P else Q −→ δP

(Else) if M = N then P else Q −→ δQ for M, N ∈ TG s.t.Σ 6⊢ M =E N

(EvCon)
A −→ µ

C[A] −→ µC
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A stuttering reduction (Id) is needed to deal with + and ⊕p (see Example 1).
Communication (Comm) is kept simple considering as a variable the message
sent. There is no loss of generality since Alias and Subst can introduce a vari-
able to stand for a term (see [1]). Nondeterministic branching (NdBran) is as
usual, the symmetric reduction is omitted. Probabilistic branching (PrBran) re-
sults from the convex combination of probability measures. Comparisons (Then

and Else) rely on the underlying equational theory E; using Else may some-
times require to apply active substitutions in the context in order to get ground
terms M and N . Note that the only rule that gives rise to a probabilistic choice
is PrBran, the other ones just return a Dirac measure.

Since reduction rules should be closed under application of evaluation con-
texts, we need to define extensions of the distributions µ such that given A −→ µ
we could define µC such that C[A] −→ µC . Formally, given an evaluation con-
text C[ ] and a distribution µ, we define the unique distribution µC such that
µC(C[A]) = µ(A). For example, with µ� |B we denote the distribution µ′ such
that µ′(A |B) = µ(A), with µνu.� we denote the distribution µ′ such that
µ′(νu.A) = µ(A).

Example 1. Consider the process A = (a〈M〉+b〈M〉)⊕pc〈M〉. We have A −→ µ
and A −→ µ′, where µ = δa〈M〉 +p δc〈M〉 and µ′ = δb〈M〉 +p δc〈M〉. Moreover, we

have A |B −→ µ� |B and A |B −→ µ′
� |B for any process B.

There is a step from a process A to a process B through the distribution µ
(denoted A −→µ B) if A −→ µ and µ([B]) > 0.

An execution of A is a finite (or infinite) sequence of steps e = A −→µ1

A1 −→µ2
. . . −→µk

Ak, where A0, . . . , Ak ∈ A and µi ∈ D(A/≡). With ExecA we
denote the set of executions starting from A. For the finite execution e = A −→µ1

A1 −→µ2
. . . −→µk

Ak we define last(e) = Ak and |e| = k. For any j ≤ |e|, with ej

we define the sequence of steps A −→µ1
A1 −→µ2

. . . −→µj
Aj .

Finally, with e↑ we denote the set of executions e′ such that e ≤prefix e′,
where ≤prefix is the usual prefix relation over sequences.

Example 2. Consider again process A of Example 1, and process B = a(x). We
have A |B −→µ� | B

a〈M〉 | a(x) −→δ0 0, with µ = δa〈M〉+pδc〈M〉 and a〈M〉 | a(x) ≡
νx.(a〈x〉 | a(x) | {M/x}). Note that we also have A |B −→µ� | B

c〈M〉 | a(x).

Since we allow nondeterministic choices, an extended process may behave in
several different ways. Intuitively, the nondeterministic choice is among the pos-
sible probability distributions that a process may follow. Given a process A, we
denote with behave(A) the set of the possible behaviours of A, i.e., behave(A) =
{µ |A −→ µ}. Hence, each possible probabilistic transition A −→µ can be seen
as arising from a scheduler resolving the nondeterminism in A (see [22]). A
scheduler is a total function F assigning to a finite execution e a distribution
µ ∈ behave(last(e)). Given a scheduler F and a process A, we define ExecFA as
the set of executions starting from A and driven by F , namely the set of exe-
cutions {e = A −→µ1

A1 −→µ2
A2 −→µ3

. . . | ∀i, µi(Ai) > 0 where µi = F (ei−1)}.
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Given the finite execution e = A −→µ1
A1 −→µ2

. . . −→µk
Ak ∈ ExecFA, we define

PF
A (e) = µ1(A1) · . . . · µk(Ak).

We define the probability space on the executions starting from a given pro-
cess A ∈ A, as follows. Given a scheduler F , σFieldF

A is the smallest sigma field
on ExecFA that contains the basic cylinders e↑, where e ∈ ExecFA. The probability

measure ProbFA is the unique measure on σFieldF
A such that ProbFA(e↑) = PF

A (e).

Example 3. Consider again the processA of Example 1, and the scheduler F such
that F (A) = µ = δa〈M〉 +p δc〈M〉. We have that the executions e = A −→µ a〈M〉
and e′ = A −→µ c〈M〉 are in ExecFA with PF

A (e) = p and PF
A (e′) = 1 − p. Note

that with the chosen F , action b〈M〉 is never performed.

Given a scheduler F , a process A and a measurable set of processes H ⊆ A,
with ExecFA(H) we denote the set of executions starting from A that cross a pro-
cess in the set H . Namely, ExecFA(H) = {e ∈ ExecFA | last(ei) ∈ H, for some i}.

We define the probability of reaching a process inH starting fromA according
to the policy given by F as ProbFA(H) = ProbFA(ExecFA(H)).

4 Equivalences

In this section we recall the definition of static equivalence for frames introduced
in [1]. We also introduce a notion of observational congruence allowing to argue
when PAPi extended processes cannot be distinguished by any context. Contexts
can be used to represent active attackers and observational congruence may
capture security properties. For example, secrecy and authentication properties
have been defined in this way in [2] for the Spi–calculus.

4.1 Static Equivalence

Two frames should be considered equivalent when they behave equivalently when
applied to terms obeying a certain equational theory E. We denote this equiv-
alence (also called static equivalence) with ≈E. As pointed out in [1], defining
a static equivalence in presence of the ν construct becomes somehow delicate.
Consider, for instance, the three frames:

ϕ0 = νk.{k/x} | νs.{s/y} ϕ1 = νk. {f(k)/x, g(k)/y} ϕ2 = νk. {k/x, f(k)/y}

where f and g are unary functions with no equations (two independent one-way
hash functions). In ϕ0, since k and s are new, variables x and y are mapped to
unrelated values different from any value a context may build. This also holds for
ϕ1 (even if f(k) and g(k) are based on the same fresh value, they look unrelated).
Thus, a context obtaining values for x and y cannot distinguish between ϕ0 and
ϕ1. However, a context may discriminate ϕ2 by checking the predicate f(x) = y.
Hence, static equivalence is defined so that ϕ0 ≈E ϕ1 6≈E ϕ2.

Definition 1. Given an equational theory E, two terms M and N are equal
in the frame ϕ ≡ νñ.σ (written (M =E N)ϕ), if and only if Mσ =E Nσ and
{ñ} ∩ (fn(M) ∪ fn(N)) = ∅.
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Hence, for the previous example, we have (f(x) = y)ϕ2 but not (f(x) = y)ϕ0.

Definition 2. Given an equational theory E, two closed frames ϕ and ψ are
statically equivalent (written ϕ ≈E ψ) when dom(ϕ) = dom(ψ) and for all terms
M and N , (M =E N)ϕ iff (M =E N)ψ.

We say that two closed extended processes A and B are statically equivalent
(written A ≈E B) iff ϕ(A) ≈E ϕ(B).

Note that deciding static equivalence can be quite hard to check (it depends
on E and Σ) [7]. The next lemma, proved in [1], states a basic property of ≈E .

Lemma 1. Static equivalence is closed by structural equivalence, by reduction,
and by application of closing evaluation contexts.

4.2 Observational Congruence

We write A ⇓F
p a (a probabilistic barb) when A can send a message on a with

probability p according to the scheduler F , namely, when ProbFA(H) = p where
A′ ∈ H if and only if A′ = C[a〈x〉.P ] for some evaluation context C[ ] that
does not bind a. Notice that the set of executions starting from A and crossing
a process in H is measurable since it can be seen as the countable union of
measurable sets

⋃

C,P,x,e.e∈ExecF
A
∧last(e)=C[a〈x〉.P ] e↑.

Definition 3. Observational congruence (≈) is the largest symmetric relation
R between closed extended processes with the same domain such that ARB im-
plies:

1. for all schedulers F such that A ⇓F
p a, there exists a scheduler F ′ such that

B ⇓F ′

p a;

2. for all schedulers F and classes C ∈ AC/R, there exists a scheduler F ′ such
that ProbFA(C) = ProbF

′

B (C);

3. C[A]RC[B] for all closing evaluation contexts C[ ].

The quantification on the schedulers means, intuitively, that given A ≈ B,
for any possible behaviour (scheduler) of A there exists an analogous behaviour
of B and viceversa.

As pointed out in [1], if A ≈ B, then, for any test C of the form if M =
N then a〈s〉 else 0, where a does not occur in A orB, A |C andB |C should have
the same barbs, thus implying static equivalence for A and B. As a consequence,
the following lemma holds, stating that observational congruence is finer than
static equivalence.

Lemma 2. Given A,B ∈ A, A ≈ B implies A ≈E B.
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4.3 Labeled Semantics and Weak Bisimulation

In process calculi theory, a labeled semantics usually allows describing the poten-
tial interactions of a process with other ones that could occur in its environment.
Such interactions are modeled by allowing the process to perform as many tran-
sitions as its active actions are, each transition having the corresponding action
as label and leading to a new process which corresponds to the result of the
execution of that action. Moreover, a labeled semantics may include silent (or
internal) transitions, usually labeled with τ , which describe the internal activity
of the process, namely the interactions occurring between internal components
of the system. Furthermore, the actions performed may include parameters. As
an example, since the action of sending or receiving a message on a channel may
require the transmitted message as parameter, one should explicitly show the
parameter within the transition label.

Thus, to model the interaction of PAPi processes with the environment, a
labeled operational semantics can be provided which defines a relation A

α
−→ µ,

where α is a label of one of the following forms:

– the symbol τ (corresponding to an internal reduction);
– a label a(M), where M may contain names and variables (corresponding to

an input of M on a);
– a label a〈u〉 or νu.a〈u〉, where u is either a channel name or a variable of

base type (corresponding to an output of u on a).

In addition to the structural congruence rules and the internal reduction seman-
tics of Section 3.2 (where each reduction rule should be equipped with the label
τ), we adopt the following rules:

(In) a(x).P
a(M)
−−−→ δP{M/x} (Out-Atom) a〈u〉.P

a〈u〉
−−−→ δP

(Open-Atom)
A

a〈u〉
−−−→ µ u 6= a

νu.A
νu.a〈u〉
−−−−−→ µ

(Scope)
A

α
−→ µ u does not occur in α

νu.A
α
−→ νu.µ

(Par)
A

α
−→ µ bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅

A |B
α
−→ µ |B

(Struct)
A ≡ B B

α
−→ µ

A
α
−→ µ

There is a step from a process A to a process B through the distribution µ with
label α (denoted A

α
−→µ B) if A

α
−→ µ and µ(B) > 0. Given a process A, different

reaction rules A
α
−→ µ may be applied according to α and µ. As a consequence,

we redefine the set of possible behaviours of A as behavel(A) = {(α, µ) |A
α
−→ µ}.

A labeled execution of A is a finite (or infinite) sequence of steps e = A
α1−→µ1

A1
α2−→µ2

. . .
αk−−→µk

Ak, where A0, . . . , Ak ∈ A and µi ∈ D(A/≡). With abuse
of notation, we define ExecA, last(e) = Ak, |e|, ej and e ↑ as for unlabeled
executions.

Executions arise by resolving the nondeterminism on both α and µ. As a
consequence, a scheduler for the labeled semantics is a function F assigning to
a finite labeled execution e a pair (α, µ) ∈ behavel(last(e)).
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Given a scheduler F and a process A, we define ExecFA as the set of executions

starting from A and driven by F , namely the set of executions {e = A
α1−→µ1

A1
α2−→µ2

A2
α3−→µ3

. . . | ∀i, µi(Ai) > 0 where (αi, µi) = F (ei−1)}. Given the

finite execution e = A
α1−→µ1

A1
α2−→µ2

. . .
αk−−→µk

Ak ∈ ExecFA, we define PF
A (e) =

µ1(A1) · . . . · µk(Ak).

Example 4. Consider the process A of Example 1 and the scheduler F such that
F (A) = (τ, µ), with µ defined as in Example 1, and, trivially, F (A

τ
−→µ a〈M〉) =

(a〈M〉, δ0) and F (A
τ
−→µ c〈M〉) = (c〈M〉, δ0). We have e = A

τ
−→µ a〈M〉

a〈M〉
−−−→δ0

0 and e′ = A
τ
−→µ c〈M〉

c〈M〉
−−−→δ0 0 with PF

A (e) = p and PF
A (e′) = 1 − p. Note,

again, that with such a scheduler the label b〈M〉 does never appear. Also note
that the process νc.A may reach with probability (1 − p) the process νc.c〈M〉
from which it cannot perform any other step.

Again, given a scheduler F , a finite execution e and a measurable set H ,
ProbFA(e↑), ExecFA(H) and ProbFA(H) are defined analogously as for the unla-
beled case. Let ExecFA(τ∗ατ∗, H) be the set of executions that, starting from
A, lead to a process in H via an execution performing an α action preceded
and followed by an arbitrary number of τ steps. We define the probability
ProbFA(τ∗ατ∗, H) = ProbFA(ExecFA(τ∗ατ∗, H)).

Definition 4. Weak bisimulation (≈l) is the largest symmetric relation R be-
tween closed extended processes with the same domain such that ARB implies:

1. A ≈E B;

2. for all schedulers F and classes C ∈ AC/R, there exists a scheduler F ′ such
that ProbFA(C) = ProbF

′

B (C);

3. for all schedulers F , α 6= τ and classes C ∈ AC/R, there exists a scheduler
F ′ such that ProbFA(α, C) = ProbF

′

B (τ∗ατ∗, C), with fv(α) ⊆ dom(A) and
bn(α) ∩ fn(B) = ∅.

The following lemma states that given A ≈l B and a closing evaluation
context C[ ], C[A] ≈l C[B] holds.

Lemma 3. ≈l is closed under application of closing evaluation contexts.

Proof. (Sketch) Given A ≈l B we should prove that C[A] ≈l C[B] for any closing
evaluation context C[ ]. The proof is done by induction on the structure of C[ ].

– For C[ ] = � we have C[A] = A and C[B] = B, thus the result trivially
holds.

– For C[ ] = C̄ |� or C[ ] = � | C̄ with C̄ ∈ AC , the only non trivial case is
for C̄ = if M = N then P else Q. Now, since by definition of ≈l we have
that A ≈E B, we have that A and B should pass the same tests (in this case
defined by all the possible contexts C̄), thus implying that C̄ |A ≈l C̄ |B.
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– For C[ ] = νu.�, we have that for any label α such that u 6∈ α, scheduler
F and equivalence class C, ProbFA(α, C) = ProbFB(α, C) = ProbFC[A](α, C) =

ProbFC[B](α, C). For any α such that α = a〈u〉 and a 6= u, ProbFA(α, C) =

ProbFB(α, C) = ProbFC[A](νu.α, C) = ProbFC[B](νu.α, C). For any α such that

α = a〈u〉 and a = u, ProbFC[A](α, C) = ProbFC[B](α, C) = ProbFC[A](νu.α, C) =

ProbFC[B](νu.α, C) = 0. ⊓⊔

We can also show that ≈l and ≈ coincide. Even if the notion of weak bisim-
ulation does not include an explicit condition about contexts, it is still closed
under application of evaluation contexts. As a consequence, ≈l is simpler than
the notion of observational congruence given in Definition 3.

Theorem 1. ≈l is a congruence.

Proof. Immediate, from Lemma 3. ⊓⊔

Theorem 2. A ≈l B if and only if A ≈ B.

Proof. (Sketch) ⇒) Condition 1 of Definition 3, is guaranteed by condition 3
of Definition 4. Condition 2 of Definition 3 is identical to condition 2 in Defini-
tion 4. Condition 3 in Definition 3 is guaranteed by Lemma 3. ⇐) Condition 1 of
Definition 4 is guaranteed by Lemma 2. Condition 2 is equal in both definitions.
Condition 3 of Definition 4 can be proved by induction on the structure of the
label α using condition 1 of Definition 3 at the induction step for α = a〈M〉. ⊓⊔

5 An Application

We give an implementation of the 1-out-of-2-oblivious transfer protocol (OT1
2)

in PAPi. The notion of oblivious transfer (OT) was first introduced by Ra-
bin [18] in a number theoretic context and then generalized by Even, Goldreich
and Lampel [10] with the OT1

2 notion. Intuitively, OT1
2 allows one party (S) to

transfer exactly one secret, out of two different recognizable secrets (M0,M1),
to his counterpart (R). Each secret is received with probability one half and
the sender is completely ignorant of which secret has been received. Intuitively,
OT1

2(S,R,M0,M1) is a protocol that should satisfy the following axioms: (A)
R can read exactly one message: either M0 or M1, the probability of each to
be read is one half; (B) if R does not read Mi he gains no useful information
about Mi by the execution of OT1

2; (C) for S, the a posteriori probability that
R got M0 (M1) remains one half. Oblivious transfer is widely used in protocols
for secure multiparty computation and has been shown to be rather efficient.

In order to describe OT1
2 in PAPi, and recalling the notation in [10], we

should extend the equational theory for asymmetric encryption with two binary
functions ⊞ and ⊟ such that (x⊞ y) ⊟ y = x and the mappings x 7→ x ⊞ y and
y 7→ x⊞y are permutations on the set of terms. Intuitively, when using RSA [19],
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x⊞ y is implemented as reduction modulo N (the RSA modulus) of x+ y, while
x⊟ y is the reduction modulo N of x− y. The full list of equations is:

(1) fst(pair(x, y)) = x (2) snd(pair(x, y)) = y
(3) dec(enc(x, pk(y)), sk(y)) = x (4) enc(dec(x, sk(y)), pk(y)) = x
(5) (x⊞ y) ⊟ y = x (6) (x⊞ y) ⊟ x = y
(7) x⊞ (y ⊟ x) = y (8) x⊞ y = y ⊞ x

We are now ready to implement OT1
2 in PAPi in the following way:

OT1
2(S, R,M0, M1) ::= S(M0, M1) |R where:

S(M0, M1) ::= νe.νm0.νm1.
“

c〈pk(e),m0, m1〉.c(y).(c〈T00, T11, 0〉⊕ 1

2

c〈T01, T10, 1〉)
”

with Tij = Mi ⊞ dec(y ⊟ mj , sk(e)) and:

R ::= νl.
“

c(z, x0, x1).(c〈enc(l, z) ⊞ x0〉.P0⊕ 1

2

c〈enc(l, z) ⊞ x1〉.P1)
”

with, for i ∈ {0, 1} Pi ::= c(y0, y1, y2). (if y2 =E 0 then a〈yi ⊟ l〉 else a〈y1−i ⊟ l〉) .

For simplicity we write input actions with multiple variables (this can be easily
encoded with pair, fst and snd). S picks two fresh messages m0 and m1 and
transmits them to R, together with the public key of the fresh secret e. The
receiver R receives this triple and randomly (with probability 1

2 ) sends back to
S the term T = enc(l, pk(e))⊞mi, for i ∈ {0, 1}. Since S does not know the secret
value l, it cannot tell whether T has been obtained from m0 or m1. S generates
the messages Tij obtained by combiningMi and mj and with probability 1

2 sends
to R the Mi combined with the right mj used by R. The flag 0 (1, resp.) is used
to indicate that S used m0 (m1, resp.) for the first part of the message. The
receiver can now compute the secret (M0 or M1) from the right Tij and l. At
the final step, R sends the value of the received secret on channel a.

Note that we do not consider equations of the form dec(M, sk(e)) = wrong
when M is not encrypted with sk(e). Otherwise, S may be able to know which
mj was used by R through the test dec(enc(l, pk(e)) ⊞mi ⊟mj , sk(e)) = wrong.
Such a test is true only if i 6= j. In the case of i = j, S is able to compute the
secret l as dec(enc(l, pk(e)) ⊞mi ⊟mj , sk(e)). This problem is avoided by using
an asymmetric cipher (e.g., RSA), obtained with equations (4) and (5). In this
way, the test never returns the value wrong and S cannot tell whether the result
of dec(enc(l, pk(e)) ⊞mi ⊟mj , sk(e)) is l or just a random decryption.

By means of our notion of weak bisimulation we can show that the OT1
2 im-

plementation in PAPi satisfies the axioms. In particular, we can show that the
receiver R receives M0 or M1 with probability 1

2 by checking the weak bisimula-
tion of the protocol implementation with the process that simply outputs M0 or
M1 on a channel a with probability 1

2 . Such a system, which captures axioms (A),
(B) and (C) required by OT1

2, may be seen as the secure behaviour of the pro-
tocol. Namely, imposing a restriction on channel c, thus forcing synchronization
among S and R, it holds that:

νc.OT1
2(S,R,M0,M1) ≈l a〈M0〉⊕ 1

2

a〈M1〉.

This can be proved easily, since νc.OT1
2(S,R,M0,M1) performs only internal

reductions labeled with τ before performing the output of M0 or M1 (with prob-
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ability 1
2 , resp.) on channel a. The two bisimilar labeled probabilistic automata

modeling the behaviour of νc.OT1
2(S,R,M0,M1) and a〈M0〉⊕ 1

2

a〈M1〉 are shown

in Figure 1 (probabilities equal to 1 are omitted). Notice that at each step there
is just a probability distribution that a scheduler can chose (the only nondeter-
ministic choices are among blocking schedulers).
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2
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�*

a〈M0〉 1

2
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a〈M1〉 1

2

Fig. 1. νc.OT1
2(S, R, M0, M1) ≈l a〈M0〉⊕ 1

2

a〈M1〉.

6 A Conservative Extension

Many process algebraic approaches are non–probabilistic and, in general, prob-
abilistic choice can be approximated by suitable nondeterministic mechanisms.
Using probabilistic features, however, provides stronger safety and security guar-
antees. We give formal substance to this claim (Proposition 1 below), by showing
that ≈ is a conservative extension of an appropriate notion of observational con-
gruence for the purely Nondeterministic Applied Pi–calculus (NAPi), obtained
by removing the probabilistic choice operators from the syntax of plain processes.

With ANP we denote the set of extended processes in NAPi. The internal re-
duction A −→ A′, becomes now the smallest relation on ANP closed by structural
equivalence and application of evaluation contexts such that:

a〈x〉.P | a(x).Q −→ P |Q
P −→ P ′

P +Q −→ P ′
if M = M then P else Q −→ P

if M = N then P else Q −→ Q for M, N ∈ TG s.t.Σ 6⊢ M =E N

Given a process A ∈ A we define the plain process ANP ∈ ANP obtained
by replacing each probabilistic choice operator appearing in A with a purely
nondeterministic choice operator. As an example, given A = (P⊕pQ) | {M/x},
we get ANP = (P+Q) | {M/x}.

The notion of observational congruence introduced in the probabilistic frame-
work (see Definition 3) can be rewritten for the purely nondeterministic case.

For A ∈ ANP , we write A ⇓ a when A can send a message on a, namely
when A −→∗ C[a〈x〉.P ] for some evaluation context C[ ] that does not bind a.

Definition 5. Nondeterministic observational congruence (≈NP ) is the largest
symmetric relation R between closed extended processes in ANP with the same
domain such that ARB implies:

1. if A ⇓ a, then B ⇓ a;
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2. if A −→∗ A′, then B −→∗ B′ and A′RB′ for some B’;
3. C[A]RC[B] for all closing evaluation contexts C[ ].

The following proposition states that removing probabilities form two ob-
servationally equivalent probabilistic extended processes the equivalence is pre-
served in the purely nondeterministic setting.

Proposition 1. Given A,B ∈ A such that A ≈ B, then ANP ≈NP BNP .

Proof. (Sketch) For each execution in the probabilistic setting there exist a cor-
responding execution in the nondeterministic one. Hence, for each probabilistic
barb of A and B (with the same probability), there exist nondeterministic ones
for ANP and BNP . The converse implication does not hold, since, in general,
two barbs in the nondeterministic setting may have two different probabilities
in the richer framework. ⊓⊔

Hence, if a system satisfies an observational equivalence property in the prob-
abilistic setting, its nondeterministic counterpart does still satisfy the property
in the nondeterministic setting. The converse implication does, in general, not
hold, since systems satisfying a property in the nondeterministic setting may
turn out to lose the property in the more expressive probabilistic framework.

Example 5. Consider the process A = νc.OT1
2(S,R,M0,M1) introduced in Sec-

tion 5 and the family of processes B = a〈M0〉⊕pa〈M1〉. It is easy to see that
ANP ≈NP BNP (both processes have just a barb on channel a). However, it is
not true that A ≈ B for all p. Actually, the equivalence holds just for p = 1

2 .

7 Conclusions

In this paper we have introduced the Probabilistic Applied Pi–calculus (PAPi),
an extension of the Applied Pi–calculus ([1]) for dealing with probability, non-
determinism and equations (which are shown to be rich enough for modeling the
most common cryptographic operations). We have given a labeled operational
semantics and a labeled weak bisimulation, which we have then shown to be a
congruence. As one expects, the results given in the probabilistic framework are
preserved with respect to the results given in the non-probabilistic one.

As an application, we have shown how PAPi applies to the OT1
2 protocol

where probability and cryptographic operations play an important role. As an-
other possible future application, we mention, just as an example, sensor net-
works, for which: (a) environmental distributed sensing can be modeled with a
nondeterministic choice among input channels waiting for external stimuli; (b)
randomization is crucial (see the probabilistic routing policies introduced in [3],
or the randomized sleeping architecture proposed in [5]); (c) cryptography is fun-
damental when dealing with secure wireless communication. Notice, moreover,
that thanks to the generality of equational theories, PAPi can also be applied to
domains different from security.
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