On a Non-Context-Free Extension of PDL

Stefan Göller and Dirk Nowotka

Institute for Formal Methods in Computer Science (FMI)
University of Stuttgart, Germany

Abstract

Over the last 25 years, a lot of work has been done on seeking for decidable non-regular extensions of Propositional Dynamic Logic (PDL). Only recently, an expressive extension of PDL, allowing visibly pushdown automata (VPAs) as a formalism to describe programs, was introduced and proven to have a satisfiability problem complete for deterministic double exponential time. Lately, the VPA formalism was extended to so called k-phase multi-stack visibly pushdown automata (k-MVPAs). Similarly to VPAs, it has been shown that the language of k-MVPAs have desirable effective closure properties and that the emptiness problem is decidable. On the occasion of introducing k-MVPAs, it has been asked whether the extension of PDL with k-MVPAs still leads to a decidable logic. This question is answered negatively here. We prove that already for the extension of PDL with 2-phase MVPAs with two stacks satisfiability becomes Σ_1^1-complete.

Key words: Propositional Dynamic Logic, Visibly Pushdown Automata, Multi-Stack Visibly Pushdown Automata, Decidability, Satisfiability

1 Introduction

Propositional Dynamic Logic (PDL) is a modal logic introduced by Fischer and Ladner [1] which allows to reason about regular programs. In PDL, there are two syntactic entities: formulas, built from boolean and modal operators and interpreted as sets of worlds of a Kripke structure; and programs, built from the operators test, union, composition, and Kleene star and interpreted as binary relations in a Kripke structure. Thence, the occurring programs can be seen as a regular language over an alphabet that consists of tests and atomic programs. However, the mere usage of regular programs limits the
expressiveness of PDL as for example witnessed by the set of executions of well-matched calls and returns of a recursive procedure, cf. \cite{[2]}. Therefore, non-regular extensions of PDL have been studied quite extensively \cite{[2],[3],[4],[5]}. An extension of PDL by a class L of languages means that in addition to regular languages also languages in L may occur in modalities of formulas.

One interesting result on PDL extensions, among many others as summarized in \cite{[2]}, is that already the extension of PDL with the single language $\{a^n b a^n \mid n \geq 1\}$ leads to an undecidable logic \cite{[3]}. In contrast to this negative result, Harel and Raz proved that adding to PDL a single language accepted by a single-minded pushdown automaton yields a decidable logic \cite{[6]}. A simple-minded pushdown automaton is a restricted pushdown automaton, where each input symbol determines the next control state, the stack operation and the stack symbol to be pushed, in case a push operation is performed. Generalizing this concept, Alur and Madhusudan proposed in \cite{[7]} visibly pushdown languages which are defined as languages accepted by visibly pushdown automata (VPAs). A VPA is a pushdown automaton, where the stack operation is determined by the input in the following way; the alphabet is partitioned into letters that prompt a push, internal, or pop action, respectively. Note that it is well-known that visibly pushdown automata are strictly more powerful than simple-minded pushdown automata. Recently, also for the model of visibly pushdown languages, a PDL extension has been investigated by Löding, Lutz, and Serre \cite{[4]}. They proved that satisfiability of this PDL extension is complete for deterministic double exponential time. Note that for this result, every visibly pushdown language occurring in a formula must be over the same partition of the alphabet.

Recently, k-phase multi-stack visibly pushdown automata (k-MVPAs), a natural extension of VPAs, have been introduced in \cite{[8]}. A k-MVPA is an automaton equipped with n stacks where, again, the actions on the stacks are determined by the input, more precisely, every input symbol specifies on which stack a push or pop operation or whether an internal operation is done. Moreover, a k-MVPA is restricted to accept only words that can be obtained by concatenating at most k phases, where a phase is a sequence of input symbols that invoke pop actions from at most one stack. Note that k-MVPAs with one stack coincide with VPAs.

Due to the various effective closure properties and a decidable emptiness problem of the language class described by k-MVPAs, it is an interesting question to ask if the corresponding extension of PDL is still decidable. This question was raised in \cite{[8]} and is answered negatively in this article. We prove Σ_1^1-completeness for this PDL extension. A Σ_1^1 lower bound already holds, if we restrict ourselves to deterministic 2-MVPAs with two stacks. This is the weakest possible instance of k-MVPAs that is still more powerful than VPAs. Our proof relies on the same technique of the Σ_1^1-hardness proof of undecid-
ability of PDL extended with the single language \(\{a^nb \cdot a^n | n \geq 1\} \), which is presented in \[2\]. Note however, that \(\{a^nb \cdot a^n | n \geq 1\} \) is not recognized by any \(k \)-MVPA for any \(k \).

We proceed as follows. We recapitulate \(k \)-MVPAs in Section \[2\] Section \[3\] introduces the extension of PDL with \(k \)-MVPAs. A \(\Sigma_1 \)-completeness proof is presented in Section \[4\].

2 \(k \)-Phase Multi-Stack Visibly Pushdown Automata

In this section we recall the definition of \(k \)-phase multi-stack visibly pushdown automata from \[8\].

Let \(\mathbb{N} = \{0, 1, 2, \ldots \} \) denote the natural numbers. Let \(n \in \mathbb{N} \), then \([n] = \{1, 2, \ldots, n\} \). Note that \([0] = \emptyset\). Let \(\varepsilon \) denote the empty word. For some \(n \in \mathbb{N} \) an \(n \)-stack call-return alphabet is a tuple \(\tilde{\Sigma}_n = \langle \{\Sigma_c^i, \Sigma_r^i\}_{i \in [n]}, \Sigma_{\text{int}} \rangle \) of pairwise disjoint finite alphabets. Let \(\Sigma_c^i = \bigcup_{i \in [n]} \Sigma_c^i \) and \(\Sigma_r^i = \bigcup_{i \in [n]} \Sigma_r^i \) for every \(i \in [n] \), and let \(\Sigma = \Sigma_c \cup \Sigma_r \cup \Sigma_{\text{int}} \). Let us fix \(\tilde{\Sigma}_n \) for the rest of this section.

Definition 1 A multi-stack visibly pushdown automaton (MVPA) over \(\tilde{\Sigma}_n \) is a tuple \(M = (Q, Q_I, \Gamma, \delta, Q_F) \), where (i) \(Q \) is a finite set of states, (ii) \(Q_I \subseteq Q \) is the set of initial states, (iii) \(\Gamma \) is a finite stack alphabet with \(\bot \in \Gamma \setminus \Sigma \), (iv) \(\delta \subseteq (Q \times \Sigma_c \times Q \times \Gamma \setminus \{\bot\}) \cup (Q \times \Sigma_r \times Q \times Q) \cup (Q \times \Sigma_{\text{int}} \times Q) \), and (v) \(Q_F \subseteq Q \) is the set of final states.

A \(k \)-MVPA is deterministic, if \(|Q_I| = 1 \) and for each \(q \in Q \), for each \(a \in \Sigma \), and for each \(\gamma \in \Gamma \) we have

\[
\left| \delta \cap (\{q\} \times \{a\} \times (Q \times \Gamma \setminus \{\bot\}) \cup \{\gamma\} \times (Q \cup Q)) \right| \leq 1.
\]

The set of stacks is defined as \(St = (\Gamma \setminus \{\bot\})^* \cdot \{\bot\} \). A configuration of an MVPA is a pair \((q, C)\) where \(q \in Q \) and \(C : [n] \rightarrow St \) is a mapping. A run of \(M \) on an input \(w = a_1a_2 \cdots a_m \in \Sigma^*(m \geq 0) \), with \(a_i \in \Sigma \) for each \(i \in [m] \), is a sequence of configurations \((q_0, C_0)(q_1, C_1) \cdots (q_m, C_m)\) such that

- \(q_0 \in Q_I \) and \(C_0(i) = \bot \) for each \(i \in [n] \) and
- for every \(j \geq 1 \) we have,
 - whenever \(a_j \in \Sigma_c^i \) for some \(i \in [n] \), then there exists some \(\gamma \in \Gamma \setminus \{\bot\} \) such that \((q_{j-1}, a_j, q_j, \gamma) \in \delta \), and \(C_j(i) = \gamma \cdot C_{j-1}(i) \) and \(C_j(i') = C_{j-1}(i') \) for all \(i' \in [n] \) with \(i' \neq i \),
 - whenever \(a_j \in \Sigma_r^i \) for some \(i \in [n] \), then there exists some \(\gamma \in \Gamma \) such that \((q_{j-1}, a_j, \gamma, q_j) \in \delta \), and \(C_j(i') = C_{j-1}(i') \) for all \(i' \in [n] \) with \(i' \neq i \) and
We introduce the usual abbreviations $false$ and $true$.

We call a run $(q_0, C_0)(q_1, C_1)\cdots (q_m, C_m)$ accepting, if $q_m \in Q_F$. Furthermore, we denote by $L(M) = \{w \in \Sigma^* \mid$ there exists an accepting run of M on $w\}$ the language of M. A word $w \in \Sigma^*$ is a phase, if $w \in (\Sigma_c \cup \Sigma_{int} \cup \Sigma_i^k)^*$ for some $i \in \mathbb{N}$. For $k \geq 1$, we say a word is a k-phase if it can be obtained by concatenating at most k phases.

Definition 2 A k-phase multi-stack visibly pushdown automaton (k-MVPA) M is a multi-stack visibly pushdown automaton that is restricted to accept k-phases only. Formally, we define

$L(M) = \{w \in \Sigma^* \mid w$ is a k-phase and there exists an accepting run of M on $w\}$.

Note that $n = 0$ implies that a k-MVPA is as powerful as a finite state automaton. Moreover, we get precisely the VPAs as introduced in [7] when $n = 1$.

3 Propositional Dynamic Logic over k-MVPAs

Fix some countable set \mathbb{P} of atomic propositions, and some $k, n \in \mathbb{N}$ with $k \geq 1$. The set of formulas Φ and the set of tests $Tests$ Tests of the logic PDL(k, n) over some n-stack call-return alphabet $\Sigma_n = \{\{\Sigma_c^i, \Sigma_i^j\}_{i \in [n]}, \Sigma_{int}\}$ are the smallest sets that satisfy the following conditions:

- true $\in \Phi$,
- if $p \in \mathbb{P}$, then $p \in \Phi$,
- if $\varphi_1, \varphi_2 \in \Phi$, then $\varphi_1 \lor \varphi_2, \neg \varphi_1 \in \Phi$,
- if $\varphi \in \Phi$, then $\varphi \in Tests$,
- if $\varphi \in \Phi$ and $\Psi \subseteq Tests$ is finite, then $\langle \chi \rangle \varphi \in \Phi$, where χ is either a regular expression over $\Sigma \cup \Psi$ or χ is a k-MVPA over $\langle \{\Sigma_c^i, \Sigma_i^j\}_{i \in [n]}, \Sigma_{int} \cup \Psi\}$.

We introduce the usual abbreviations $false = \neg true$, $\varphi_1 \lor \varphi_2 = \neg (\neg \varphi_1 \lor \neg \varphi_2)$, and $[x]\varphi = \langle \chi \rangle \neg \varphi$. A Kripke structure is a tuple $K = (X, \{ \rightarrow_a \}_{a \in \Sigma}, \rho)$, where X is a set of worlds, $\rightarrow_a \subseteq X \times X$ is a binary relation for each $a \in \Sigma$, and $\rho : X \rightarrow 2^\mathbb{P}$ assigns to each world a set of atomic propositions. For each $\varphi \in \Phi$ and for each $w \in (\Sigma \cup Tests)^*$, define the binary relation $[w]_K \subseteq X \times X$ and the set $[\varphi]_K \subseteq X$ via mutual induction as follows:

- $[\varepsilon]_K = \{(x, x) \mid x \in X\},$
• if $\varphi? \in \text{Tests}$, then $[\varphi?]_K = \{(x, x) \mid x \in X \land x \in [\varphi]_K\}$;
• if $a \in \Sigma$, then $[a]_K = \rightarrow_a$;
• if $w \in (\Sigma \cup \text{Tests})^*$ and $\tau \in \Sigma \cup \text{Tests}$, then $[w\tau]_K = [w]_K \circ [\tau]_K$;
• if $p \in \mathbb{P}$, then $[p]_K = \{x \in X \mid p \in \rho(x)\}$;
• $[\varphi_1 \lor \varphi_2]_K = [\varphi_1]_K \cup [\varphi_2]_K$;
• $[\neg \varphi]_K = X \setminus [\varphi]_K$;
• $[\chi \varphi]_K = \{x \in X \mid \exists y \in X \exists w \in L(\chi) : (x, y) \in [w]_K \land y \in [\varphi]_K\}$.

Note that since we restrict k-MVPAs to accept k-phases only, we additionally allow formulas of the kind $\langle \alpha \rangle \varphi$, where α is a regular expression over a finite subset of $\Sigma \cup \text{Tests}$. A k-MVA can accept a regular language over k-phases only, that is, not even Σ^* (if Σ contains two pop symbols from different stacks) can be recognized. However, since we would like to increase the expressiveness of PDL beyond regular programs, we have to explicitly take in regular expressions. If L is a language over a finite subset of $\Sigma \cup \text{Tests}$, we define $[L]_K = \bigcup_{w \in L} [w]_K$. In the following, we will write $\langle L \rangle \varphi ([L]_\varphi)$ instead of $\langle \chi \rangle \varphi ([\chi]_\varphi)$, where L is the language of χ and χ is either some regular expression or some k-MVA. We also write $(K, x) \models \varphi$ whenever $x \in [\varphi]_K$. We say that K is a model for φ, if $(K, x) \models \varphi$ for some world x of K. We say a PDL(k, n) formula φ is satisfiable, if there exists a model for φ. The satisfiability problem asks, given a PDL(k, n) formula φ, whether φ is satisfiable.

When restricting all automata that occur in a formula to be visibly push-down automata (i.e. over a single stack), L"oding, Lutz and Serre obtained the following result:

Theorem 3 ([4]) Satisfiability of PDL(1,1) is complete for deterministic double exponential time.

4 \(\Sigma_1^1\)-Completeness of PDL(k, n)

For the Σ_1^1 upper bound, we can easily adapt the proof of Proposition 9.4 in [2] and show that every satisfiable PDL(k, n) formula has a countable tree model. Thus, we can write down an existential second-order number-theoretic formula over \mathbb{N} that is valid if and only if φ is satisfiable.

For the lower bound, we prove that PDL(k, n) is Σ_1^1-hard already for $k = 2$ and $n = 2$, i.e. we can restrict all occurring MVPAs to have 2 stacks and to accept 2-phases only. For this, we reduce the Σ_1^1-hard recurring tiling problem of the first quadrant of the plane to satisfiability of PDL(2,2). A recurring tiling system $T = (T, H, V, t_0)$ consists of a finite set of tile types T, a horizontal matching relation $H \subseteq T \times T$, a vertical matching relation $V \subseteq T \times T$, and a tile type $t_0 \in T$. A solution for T is a mapping $\mu : \mathbb{N} \times \mathbb{N} \rightarrow T$ such that
for infinitely many $m \in \mathbb{N}$ we have $\mu(0, m) = t_0$ and for all $(n, m) \in \mathbb{N} \times \mathbb{N}$ we have

- if $\mu(n, m) = t$ and $\mu(n + 1, m) = t'$, then $(t, t') \in H$, and
- if $\mu(n, m) = t$ and $\mu(n, m + 1) = t'$, then $(t, t') \in V$.

The recurring tiling problem is to decide whether a given recurring tiling system has a solution.

Theorem 4 ([9]) The recurring tiling problem is Σ_1^1-complete.

For the rest of the section fix some tiling system $T = (T, H, V, t_0)$. Our goal is to translate T into a PDL$(2, 2)$ formula $\varphi = \varphi(T)$ over the set of atomic propositions T such that T has a solution if and only if φ is satisfiable.

Fix the 2-stack alphabet $\tilde{\Sigma}_2 = \langle \{\Sigma^c_i, \Sigma^r_i\}_{i \in \{1, 2\}}, \Sigma_{int} \rangle$ where $\Sigma^c_i = \{a_i\}$ and $\Sigma^r_i = \{b_i\}$ for each $i \in [2]$ and where $\Sigma_{int} = \{c, d\}$. Define the languages L_ℓ, L^-_ℓ, and L^+_ℓ for each $\ell \in \{0, 1\}$ as follows, where $w_0 = a_1b_2$ and $w_1 = a_2b_1$ and $e_0 = d$ and $e_1 = c$:

\[
L_\ell = \{w^i_\ell e_\ell w^j_{\ell-\ell} e_{1-\ell} \mid i, j \geq 0 \text{ and } j \neq i + 1\},
\]
\[
L^-_\ell = \{w^i_\ell e_\ell w^{i+\ell+1}_{\ell-\ell} \mid i \geq 0\},
\]
\[
L^+_\ell = \{w^i_\ell e_\ell w^{i-\ell+2}_{\ell-\ell} \mid i \geq 0\}.
\]

Proposition 5 For each of the languages L_ℓ, L^-_ℓ, and L^+_ℓ, with $\ell \in \{0, 1\}$, there exists a deterministic 2-MVPA over $\tilde{\Sigma}_2$ that accepts it.

PROOF. Figures 1 to 3 depict 2-MVPAs recognizing L_ℓ, L^-_ℓ, and L^+_ℓ, respectively, for $\ell = 0$. The case $\ell = 1$ is deduced by simultaneously substituting a_1, b_2, c, and d by a_2, b_1, d, and c, respectively. Note that all automata are deterministic. \(\square\)

Fig. 1. A 2-MVPA recognizing $L_0 = \{(a_1b_2)^i d (a_2b_1)^j c \mid i, j \geq 0, j \neq i + 1\}$.

Let φ_{snake} be defined as follows:

$$\varphi_{\text{snake}} = \langle ca_1 b_2 d(a_2 b_1)^2 \rangle \text{true} \land [\Sigma^* c] \langle (a_1 b_2)^* d \rangle \text{true} \land [L_0] \text{false} \land [\Sigma^* d] \langle (a_2 b_1)^* c \rangle \text{true} \land [L_1] \text{false}. $$

A snake of a Kripke structure K is an infinite path in K that is labeled by

$$c(a_1 b_2)^4 d(a_2 b_1)^2 c(a_1 b_2)^3 d(a_2 b_1)^4 c(a_1 b_2)^5 d(a_2 b_1)^6 c \cdots. $$

Proposition 6 Every model of φ_{snake} has a snake.

Proof. Let $K = (X, \{\rightarrow_a\}_{a \in \Sigma}, \rho)$ be a model of $\varphi_{\text{snake}},$ i.e. $(K, x) \models \varphi_{\text{snake}}$ for some $x \in X.$ By the first conjunct of $\varphi_{\text{snake}},$ there exist worlds $x_1, x_2 \in X$ such that $(x, x_1) \in [ca_1 b_2 d]_K,$ and $(x_1, x_2) \in [(a_2 b_1)^2 c]_K.$ Firstly, observe that $(K, x_2) \models \langle (a_1 b_2)^* d \rangle \text{true}$ by the third conjunct of $\varphi_{\text{snake}}.$ This implies that $(x_2, x_3) \in [(a_1 b_2)^* d]^i_1$ for some $x_3 \in X$ and some $i \in \mathbb{N}.$ But clearly $i = 3,$ for otherwise $(K, x_1) \not\models [L_1] \text{false}.$ Thus we get $(x_2, x_3) \in [(a_1 b_2)^* d]^3_1.$ Symmetrically, since $(K, x_3) \models \langle (a_2 b_1)^* c \rangle \text{true}$ and $(K, x_2) \models [L_0] \text{false}$ by the second conjunct of $\varphi_{\text{snake}},$ there exists a world x_4 such that $(x_3, x_4) \in [(a_2 b_1)^i c]^1_1.$ By repeatedly applying the above argument, it is straightforward to see that there exists an infinite sequence of worlds $x_1, x_2, x_3, x_4, \ldots$ such that for each $i \geq 1$ we have $(x_{2i-1}, x_{2i}) \in [(a_2 b_1)^{2i} c]_K$ and also $(x_{2i}, x_{2i+1}) \in [(a_1 b_2)^{2i+1} d]_K.$ Since additionally we have $(x, x_1) \in [c(a_1 b_2)^4 d],$ there exists a snake in $K.$ \hfill \square

Let the programs π^+_1 and β and the formula φ_{recur} be defined as follows:

$$\pi^+_1 = (a_1 b_2)^* d(a_2 b_1)^* c, $$

$$\beta = \pi^+_1 \left(a_1 b_2(t_0?) \pi^+_1 \cup (a_1 b_2)^* d(a_2 b_1)^* (t_0?) c\right), $$

$$\varphi_{\text{recur}} = [\Sigma^* c] \langle \beta \rangle \text{true}. $$
We call a world y on a snake σ first column, if either $x_1 \xrightarrow{c} x_2 \xrightarrow{a_1} x_3 \xrightarrow{b_2} y$ or $y \xrightarrow{c} x$ is a subpath of σ.

Proposition 7 Every model of $\varphi_{\text{snake}} \land \varphi_{\text{recur}}$ has a snake on which infinitely often first column worlds satisfy the atomic proposition t_0.

PROOF. Let K be a model of $\varphi_{\text{snake}} \land \varphi_{\text{recur}}$. By Proposition \Box there exists a snake σ_0 in K. Fix an arbitrary world x_0 on σ_0 such that for some $x \in X$ we have that $x \xrightarrow{c} x_0$ is a subpath of σ_0. It is not hard to see that, by definition of φ_{recur} and by similar arguments as in the proof of Proposition \Box there exists a snake σ_1 whose initial part agrees with σ_0 up to world x_0 and such that for some world x'_0 on σ_1, we have $(x_0, x'_0) \in [\beta]_K$. Moreover, by definition of β, on the subpath of σ_1 from x_0 to x'_0 there exists some first column world that satisfies the atomic proposition t_0. Fix an arbitrary world x_1 on σ_1 such that there is a subpath from x'_0 to x_1 on σ_1 such that additionally for some $x' \in X$ we have that $x' \xrightarrow{c} x_1$ is a subpath of σ_1. Again, we have $(K, x_1) \models \langle \beta \rangle \text{true}$. Hence again, there exists some snake σ_2 whose initial part agrees with σ_1 up to x_1 such that for some world x'_1 on σ_2 we have $(x_1, x'_1) \in [\beta]_K$ and on the subpath of σ_2 from x_1 to x'_1 some first column world of σ_2 satisfies t_0. By repeatedly applying the same argument, we obtain a snake in K on which infinitely often first column worlds satisfy t_0. \Box

Let us now give a formula φ_{tile} that guarantees that every (reachable) world contains exactly one tile type:

$$\varphi_{\text{tile}} = [\Sigma^*] \left(\bigvee_{t \in T} \left(t \land \bigwedge_{t' \in T : t \neq t'} \neg(t \land t') \right) \right)$$

Next, we give a formula φ_{\perp} that ensures that the types of vertically (horizontally) connected tiles satisfy the vertical (horizontal) matching relation:

$$\varphi_{\perp} = [\Sigma^* c(a_1 b_2)^+] \land t \rightarrow \left([L_0^+] \bigvee_{t' \in T : (t, t') \in H} t' \land [L_0^1] \bigvee_{t' \in T : (t, t') \in V} t' \right) \land$$

$$[\Sigma^* d(a_2 b_1)^+] \land t \rightarrow \left([L_1^+] \bigvee_{t' \in T : (t, t') \in H} t' \land [L_1^1] \bigvee_{t' \in T : (t, t') \in V} t' \right)$$

Our final formula φ is

$$\varphi = \varphi_{\text{snake}} \land \varphi_{\text{recur}} \land \varphi_{\text{tile}} \land \varphi_{\perp}.$$

Before proving that T has a solution if and only if φ is satisfiable, we introduce some more notation. Let $A = \{(i, j) \in \mathbb{N} \times \mathbb{N} \mid 0 \leq j \leq i\}$. We define a bijection
\[\pi : \mathbb{N} \times \mathbb{N} \to A \] for all \((n, m) \in \mathbb{N} \times \mathbb{N}\) as follows

\[\pi(n, m) = (n + m, m). \]

Thus, \(\pi^{-1}(i, j) = (i - j, j)\) for all \((i, j) \in A\).

Lemma 8 The recurring tiling system \(T\) has a solution if and only if \(\varphi\) is satisfiable.

Proof.

only-if: Assume that \(T\) has a solution \(\mu : \mathbb{N} \times \mathbb{N} \to T\). Figure 4 depicts a model \(K = K(T) = (X, \{\rightarrow_{a}\}_{a \in \Sigma}, \rho)\) that we can construct from \(T\). To all those worlds that are pictured by bullets, the mapping \(\rho\) assigns an arbitrary singleton subset from \(T\). For the worlds \(x_{i,j}\), where \((i, j) \in A\), we define

\[\rho(x_{i,j}) = \mu(\pi^{-1}(i, j)). \]

Thus, the world \(x_{i,j}\) represents the unique the pair \((n, m) \in \mathbb{N}\) such that \(\pi(n, m) = (i, j)\). It is straightforward to verify that \((K, x) \models \varphi\).

if: Let \(K = (X, \{\rightarrow_{a}\}_{a \in \Sigma}, \rho)\) be a model of \(\varphi\), i.e. we have \((K, x) \models \varphi\) for some world \(x \in X\). We prove that \(T\) has a solution. By Proposition 7 there exists a snake \(\sigma\) in \(K\) on which infinitely often first column worlds satisfy the atomic proposition \(t_{0}\), since both \(\varphi_{\text{snake}}\) as well as \(\varphi_{\text{recur}}\) occur in \(\varphi\) as a conjunct and \(K\) is a model of \(\varphi\). Recall that \(A = \{(i, j) \in \mathbb{N} \times \mathbb{N} \mid 0 \leq j \leq i\}\). For each \((i, j) \in A\), fix some world \(x_{i,j}\) on \(\sigma\) such that \(x \xrightarrow{ca_{1}b_{2}} K \ x_{0,0}\) and the following holds for each \(r \in \mathbb{N}\):

\[x_{2r,0} \xrightarrow{da_{2}b_{1}} K \ x_{2r+1,0} \quad \text{and} \quad x_{2r,s} \xrightarrow{a_{1}b_{2}} K \ x_{2r,s-1} \]

and

\[x_{2r+1,2r+1} \xrightarrow{ca_{1}b_{2}} K \ x_{2r+2,2r+2} \quad \text{and} \quad x_{2r+1,s} \xrightarrow{a_{2}b_{1}} K \ x_{2r+1,s+1} \]

for all \(0 \leq s \leq 2r\). Note that the first column nodes of \(\sigma\) are precisely the nodes \(\{x_{m,m} \mid m \in \mathbb{N}\}\). Moreover, for all \((2r, s), (2r + 1, s) \in A\) we have

\[(x_{2r,s}, x_{2r+1,s}) \in [(a_{1}b_{1})^{2r-s}d(a_{2}b_{1})^{2r-s+1}]_{K}, \]

\[(x_{2r+1,s}, x_{2r+2,s}) \in [(a_{2}b_{1})^{2r-s+1}c(a_{1}b_{2})^{2r-s+3}]_{K}, \]

\[(x_{2r,s}, x_{2r+1,s+1}) \in [(a_{1}b_{2})^{2r-s}d(a_{2}b_{1})^{2r-s+2}]_{K}, \]

\[(x_{2r+1,s}, x_{2r+2,s+1}) \in [(a_{2}b_{1})^{2r-s+1}c(a_{1}b_{2})^{2r-s+2}]_{K}. \]

Recall that
Fig. 4. Constructing a model from a solution of T.

For the rest of the proof, we show that the following mapping $\mu: \mathbb{N} \times \mathbb{N} \rightarrow T$
is a solution for T, where $(n, m) \in \mathbb{N} \times \mathbb{N}$:

$$\mu(n, m) = t \quad \text{if} \quad \{t\} = \rho(x_{\pi(n,m)}).$$

Note that μ is well-defined since the formula φ_{tile} guarantees that $\rho(x_{\pi(n,m)})$ is indeed a singleton. Since each first column world on σ is $x_{m,m}$ for some $m \in \mathbb{N}$, infinitely often first column worlds satisfy t_0, and $\pi^{-1}(m, m) = (0, m)$, it follows that $\mu(0, m) = t_0$ for infinitely many $m \in \mathbb{N}$.

Fix some $(n, m) \in \mathbb{N} \times \mathbb{N}$ such that $n + m$ is even. The case when $n + m$ is odd can be handled analogously.

Let $\mu(n, m) = t$ and $\mu(n + 1, m) = t'$ for some $t, t' \in T$. We prove that $(t, t') \in H$. By definition, we have $\rho(x_{\pi(n,m)}) = \{t\}$ and $\rho(x_{\pi(n+1,m)}) = \{t'\}$.

Note that $\pi(n, m) = (n + m, m)$ and $\pi(n + 1, m) = (n + m + 1, m)$ and since $n + m$ is even, it follows by (5) that

$$(x_{\pi(n,m)}, x_{\pi(n+1,m)}) \in \llbracket L_0^- \rrbracket_K.$$ \hfill (9)

Recall that $\varphi^1_{\downarrow_\sigma}$ is defined as follows:

$$\varphi^1_{\downarrow_\sigma} = \left[\Sigma^* c(a_1 b_2)^+ \right] \wedge t \rightarrow \left(\left[L_0^- \right] \bigvee_{t' \in T ; (t, t') \in H} t' \wedge \left[L_0^1 \right] \bigvee_{t' \in T ; (t, t') \in V} t' \right) \wedge \left[\Sigma^* d(a_2 b_1)^+ \right] \wedge t \rightarrow \left(\left[L_1^- \right] \bigvee_{t' \in T ; (t, t') \in H} t' \wedge \left[L_1^1 \right] \bigvee_{t' \in T ; (t, t') \in V} t' \right)$$

By $(x, x_{\pi(n,m)}) \in \llbracket \Sigma^* c(a_1 b_2)^+ \rrbracket_K$, by (9), and by the definition of the formula $\varphi^1_{\downarrow_\sigma}$, it follows directly that $(t, t') \in H$.

Analogously, by applying (7), for all $(n, m) \in \mathbb{N} \times \mathbb{N}$ such that $\mu(n, m) = t$ and $\mu(n, m + 1) = t'$, we conclude that $(t, t') \in V$. \hfill \Box

Finally, we obtain the following theorem:

Theorem 9 Satisfiability of $\text{PDL}(k, n)$ is Σ_1^1-complete.

References

