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Abstract

PKCS#11 defines an API for cryptographic devices that
has been widely adopted in industry. However, it has been
shown to be vulnerable to a variety of attacks that could,
for example, compromise the sensitive keys stored on the
device. In this paper, we set out a formal model of the
operation of the API, which differs from previous security
API models notably in that it accounts for non-monotonic
mutable global state. We give decidability results for our
formalism, and describe an implementation of the resulting
decision procedure using a model checker. We report some
new attacks and prove the safety of some configurations of
the API in our model.

1 Introduction

RSA Laboratories Public Key Standards (PKCS) #11
defines the ‘Cryptoki’ API, designed to be an inter-
face between applications and cryptographic devices such
as smartcards, Hardware Security Modules (HSMs), and
PCMCIA and USB key tokens. It has been widely adopted
in industry, promoting interoperability of devices. However,
the API as defined in the standard gives rise to a number of
serious security vulnerabilities, [4]. In practice, vendors try
to protect against these by restricting the functionality of the
interface, or by adding extra features, the details of which
are often hard to determine. This has lead to an unsatisfac-
tory situation in which widely deployed security solutions
are using an interface which is known to be insecure if im-
plemented naively, and for which there are no well estab-
lished fixes. The situation is complicated by the variety of
scenarios in which PKCS#11 is used: an effective security
patch for one scenario may disable functionality that is vital
for another.

In this paper, we aim to lay the foundations for an im-
provement in this situation by defining a formal model for
the operation of PKCS#11 key management commands,
proving the decidability of certain security properties in this
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model, and describing an automated framework for proving
these properties for different configurations of the API. The
organisation of the paper is as follows: in Section 2, we first
describe PKCS#11 and some of the known vulnerabilities.
We define our model in Section 3, give some decidability
results in Section 4, and detail our experiments in proving
the (in)security of particular configurations in Section 5. Fi-
nally we conclude with a discussion of related work in Sec-
tion 6.

Background. API level attacks were first identified by
Longley and Rigby, [12]. Anderson and Bond discov-
ered many more [1]. Clulow revealed the existence of
such attacks on PKCS#11, [4]. Since then, efforts have
been made to formally analyse APIs using model check-
ers, theorem provers, and customised decision procedures,
[14, 18, 7, 6, 5, 16]. None of these models account for
non-monotonic mutable global state, which was identified
by Herzog [11] as a major barrier to the application of se-
curity protocol analysis tools to the problem.

2 An introduction to PKCS#11

The PKCS#11 API is designed to allow multiple appli-
cations to access multiple cryptographic devices through a
number of slots. Each slot represents a socket or device
reader in which a device may or not be present. To talk to a
device, an application must establish a session through the
appropriate slot. Once a session has been established, an
application can authenticate itself to a token as one of two
distinct types of user: the security officer (SO) and the nor-
mal user. Authentication is by means of a PIN: a token is
typically supplied with a default SO PIN, and it is up to the
SO to set himself and the user a new PIN. As seen under
PKCS#11, the token contains a number of objects, such as
keys and certificates. Objects are referenced in the API via
handles, which can be thought of as pointers to or names
for the objects. In general, the value of the handle e.g. for a
secret key does not reveal any information about the actual
value of the key. Objects are marked as public or private.
Once authenticated, the normal user can access public and
private objects. The SO can only access public objects, but



can perform functions not available to the user, such as set-
ting the user’s PIN. A session can also be unauthenticated,
in which case only public objects and functions are avail-
able. In addition to being public or private, objects have
other attributes, which may be general, such as the attribute
sensitive which is true of objects which cannot be exported
from the token unencrypted, or specific to certain classes of
object, such as modulus or exponent for RSA keys.

Note that if malicious code is running on the host ma-
chine, then the user PIN may easily be intercepted, e.g. by
a tampered device driver, allowing an attacker to create his
own sessions with the device. Indeed the PKCS#11 stan-
dard recognises this: it states that this kind of attack cannot
“compromise keys marked ‘sensitive’, since a key that is
sensitive will always remain sensitive”, [13, p. 31]. Clulow
presented a number of attacks which violate this property,
[4]. A typical one is the so-called ‘key separation attack’.
The name refers to the fact that the attributes of a key can
be set and unset in such a way as to give a key conflicting
roles. Clulow gives the example of a key with the attributes
set for decryption of ciphertexts, and for ‘wrapping’, i.e.
encryption of other keys for secure transport. To determine
the value of a sensitive key, the attacker simply wraps it
and then decrypts it, as shown in Figure 1. Here (and in
subsequent boxes showing attacks), h(n, k) represents the
handle n; of key ky, where h is a symbol not known to the
attacker. Hence, if the attacker knows, h(ny, ky), he can’t
immediately deduce the value of k;, and if he knows the
value of some ks, he can’t a priori create himself a han-
dle h(ns, k3) for that key. The symmetric encryption of kg
under key k; is represented by senc(ky, k»).

As Clulow observes, it is not easy to prevent these kind
of attacks, since there are a large number of possible at-
tributes a key might have, and it is not clear which combina-
tions are conflicting. Additionally, if safeguards are added
to the commands for setting and unsetting attributes, an at-
tacker can subvert this by importing two copies of a key
onto a device, and setting one of the conflicting attributes
on each copy. Clulow also presented a pair of attacks he
called ‘Trojan key attacks’, whereby the intruder introduces
a wrapping key that he knows the true value of using a pub-
lic unwrapping key. He then wraps the sensitive key un-
der this known wrapping key and decrypts the result him-
self. Other vulnerabilities Clulow found include an attack
based on the use of ECB mode to wrap double length 3DES
keys, and the use of single length DES keys to wrap double
length 3DES keys. Finally, he presented a series of attacks
relying on particular details of the algorithms supported by
PKCS#11, specifically the use of small exponents in RSA
keys when using the X.509 mechanism to wrap symmetric
keys, and the use of mechanisms that permit a set of related
symmetric keys to be generated, making them susceptible
to a parallel key search.

Initial knowledge: The intruder knows h(ny, k1) and
h(na, ko). The name n has the attributes wrap and
decrypt set whereas n; has the attribute sensitive and
extract set.

Trace:
Wrap: h(na, ko), h(ny, ky) — senc(ky, ka)
SDecrypt:  h(ng, ka), senc(ky, ko) — ki

Figure 1. Decrypt/Wrap attack

The aim of our work described in this paper was to
formally model the core key management operations of
PKCS#11 and analyse them to learn more about which con-
figurations are secure and insecure. In particular, we were
interested in controlling key attributes to prevent key sep-
aration attacks. Note that attributes can be set and subse-
quently unset, which gives rise to non-monotonic mutable
state (i.e. loops) in the model. We make the usual ‘Dolev-
Yao’ assumptions, [9], used for protocol analysis, i.e. we
abstract bit strings to terms, and assume the attacker can de-
compose and recompose terms arbitrarily, with the restric-
tion that he can only decrypt encrypted packets if he has
the correct key. This means that Clulow’s final two attacks
(small exponent X.509 and parallel key search) are out of
scope for our model.

3 Formal model
3.1 Term algebra

We assume a given signature 3, i.e. a finite set of func-
tion symbols, with an arity function ar : ¥ — N, a (pos-
sibly infinite) set of names N and a (possibly infinite) set
of variables X. Names represent keys, data values, nonces,
etc. and function symbols model cryptographic primitives,
e.g. encryption. Function symbols of arity O are called con-
stants. The set of terms 7 (X, N, X) is defined by the fol-
lowing grammar:

rze kX
neN
feXandar(f)=n

t,t; = «x
| n
| f(tla"'atn)

We also consider a finite set A of unary function sym-

bols, disjoint from X which we call attributes. The

set 7 (X, N, 0), also written 7 (3, ), is the set of ground
terms. We write vars(t) for the set of variables that occur in
the term ¢ and extend vars to sets of terms in the expected
way. A position is a finite sequence of positive integers. The
empty sequence is denoted e. The set of positions pos(t)
of a term t is defined inductively as pos(a) = {e} for



a € NUX and pos(f(t1,...,tn)) = {e} UUjcicnt -
pos(t;) for f € X. If p is a position of ¢ then the ex-
pression |, denotes the subterm of ¢ at the position p, i.e.
tle = tand f(t1,...,tn)|ip = tilp. The set of subterms of
a term ¢, written st(t), is defined as {t|, | p € pos(t)}. We
denote by top the function that associates to each term ¢
its root symbol, i.e. top(a) = a fora € N U X and
top(f(t1,..-,tn)) = f.

A substitution o is a mapping from a finite subset of X
called its domain, written dom(c), to 7 (X, N, X). Sub-
stitutions are extended to endomorphisms of 7 (X, NV, X)
as usual. We use a postfix notation for their application. A
substitution o is grounding for aterm t if to is ground. This
notation is extended as expected to sets of terms.

Example 1 We consider the signature Yenc =
{senc, aenc, pub, priv, h} which we will use in the fol-
lowing to model PKCS#11. The symbols senc and aenc of
arity 2 represent respectively symmetric and asymmetric
encryption whereas pub and priv of arity 1 are constructors
to obtain public and private keys respectively. Lastly, h is a
symbol of arity 2 which allows us to model handles to keys.
We will use it with a nonce as the first argument and a key
as the second argument. Adding a nonce to the arguments
of h allows us to model several distinct handles to the same
key.

We model the attributes that are associated to han-
dles by the means of the set A. For the sake of simplic-
ity our running example only considers these attributes:
extract, wrap, unwrap, encrypt, decrypt, sensitive.

We illustrate notations for manipulating terms on
the term t = senc(aenc(ny,pub(ng)),z). We have
that vars(t) = {x} and top(t) = senc. The set of positions
of t is pos(t) = {¢,1,1.1,1.2,1.2.1,2} and t|; o, the sub-
term of t at position 1.2, is pub(ns).

3.2 Description language

To model PKCS#11 and attacker capabilities we define
a rule-based description language.

Syntax and informal semantics. A literal is an expres-
sion a(t) or —a(t) where a € Aand t € 7 (X, N, X). The
description of a system is given as a finite set of rules of the
form

T, L " g
where T and 7" are sets of terms in 7 (X, N, X), L and L’
are sets of literals and 72 is a set of names in A/. The intuitive
meaning of such a rule is the following: if all terms in T’ are
in the intruder knowledge and if the literals, which require
some attributes to be set or unset, in L are all true in the
current state, then the terms in 7" are added to the intruder

knowledge and the value of the attributes is updated to sat-
isfy L’. The new 72 means that all the names in 72 need to
be replaced by fresh names in 7”7 and L’. This allows us to
model nonce or key generation: if the rule is executed sev-
eral times, the effects are different as different names will
be used each time.

We always suppose that L’ is satisfiable, i.e. it does not
contain both a(t) and —a(t). We also suppose that any vari-
able appearing in 7" also appears in T, i.e. vars(T") C
vars(T), and any variable appearing in L’ also appears in L,
i.e. vars(L’") C wvars(L). These conditions were easily ver-
ified in all of our experiments with PKCS#11.

Example 2 As an example consider the rules given in Fig-
ure 2. They model a part of PKCS#11. We detail the first
rule which allows wrapping of a symmetric key with a sym-
metric key. Intuitively the rule can be read as follows: if the
attacker knows the handle h(xy,y1), a reference to a sym-
metric key y1, and a second handle h(xa,y2), a reference
to a symmetric key y,, and if the attribute wrap is set for
the handle h(xa,y2) (note that the handle is uniquely iden-
tified by the nonce x1) and the attribute extract is set for the
handle h(x1,y1) then the attacker may learn the wrapping
senc(yi, y2), Le. the encryption of y1 with ys.

Semantics. The formal semantics of our description lan-
guage is given in terms of a transition system. We as-
sume a given signature X, a set of attributes A, a set of
names N, a set of variables X, a set of rules R defined
over 7(X,N,X). Moreover, we assume a given set of
ground terms Sy C 7(X,N) and a partial function V; :
AXT(E,N) — {T, L} to represent the initial state. In
the following we say that the rule

. . 1
ti,. .ty L — vy, 0,05 L
is a fresh renaming of a rule
. nNew mi,...,Mg Y,
tl,...,tT“L ul,...,umL

ifv, = wn — nf,...,ne — ni] 1 < i < p),
L"=L'[ng —nf,...,ny — n}]and ny, ..., n} are fresh
names of N. The transition system (Q, o, ~) is defined as
follows:

e () is the set of states: each state is a pair (S, V'), such
that S C 7(X,N) and V is any partial function from
AXT(E,N)to{T, L}

e qo = (So, Vo) is the initial state. Sy is the initial at-
tacker knowledge and Vj defines the initial valuation
of some attributes.

e ~~» C () x @ is the transition relation defined as fol-
lows. For each fresh renaming R of a rule in R,

R=T;L—-T:L



Wrap (sym/sym) :

h(x1,y1), h(x2,y2); wrap(xy), extract(xz)

—

senc(y2,y1)

Wrap (sym/asym) : ~h(xq, priv(z)), h(xa,yo); wrap(x1), extract(xs) — aenc(ys, pub(z))

Wrap (asym/sym) :  h(x1,y1), h(xz, priv(z)); wrap(xy), extract(xz) —  senc(priv(z),y1)
Unwrap (sym/sym) - h(x1,y2), senclyn, ya)i unwrap(x) "™ h(ng,y1); extract(ny), L
Unwrap (sym/asym) :  h(xy, priv(z)), aenc(y1, pub(z)); unwrap(x;) ——" h(ny,y1); extract(n;), L
Unwrap (asym/sym) : h(x1,y2),senc(priv(z),y2); unwrap(x;) —"% h(ny,priv(z)); extract(n;), L

KeyGenerate : Dewrla, h(ny, ky); mextract(ny), L

KeyPairGenerate :

new ni,s
e

h(ny,s), pub(s); —extract(ny), L

SEncrypt : h(x1,y1),y2; encrypt(x1) —  senc(yz,y1)
SDecrypt :  h(x1,y1),senc(y2,y1); decrypt(x1) — y2
AEncrypt : h(x1, priv(z)),y1; encrypt(x1) — aenc(ys, pub(z))
ADecrypt :  h(xy, priv(z)), aenc(yz, pub(z)); decrypt(x1) — >
Set_Wrap : h(x1,y1); “wrap(x;) — wrap(xy)
Set_Encrypt : h(x1,y1); —encrypt(xy) — encrypt(x;)
UnSet_Wrap : h(x1,y1); wrap(x;) — —wrap(xy)
h(x1,y1); encrypt(x1) — —encrypt(xy)

UnSet_Encrypt :

where L = —wrap(ny), —unwrap(n; ), —encrypt(n; ), ~decrypt(ny), —sensitive(n;). The ellipsis in the set and unset rules

indicates that similar rules exist for some other attributes.

Figure 2. PKCS#11 key management subset.

we have that (S,V) ~ (S',V’) if there exists a
grounding substitution € for R such that
- T60 C S, and

— for all a(t) € L, we have that (a,t) € dom(V),
V(a,t) =T, and

- for all —a(t) € L6, we have that (a,t) €
dom (V) and V(a,t) = L.

Then, we have that S’ = S U 7”8, and the function V"’
is defined as follows:

dom (V") = dom(V)U{(a,t)| a(t)e L’
or —a(t) € L'}

T ifa(t) € L'

V'(a,t) =¢ L if ma(t) € L'
V(a,t) otherwise

Some of the rules, e.g. the unwrap and key generation
rules in Figure 2, allow the creation of new handles for
which attributes are set and unset. We therefore dynami-
cally extend the domain of the valuation whenever such new
handles are created. Note also that when (S, V) ~ (5", V")
we always have that S C S” and dom (V') C dom (V).

3.3  Queries

Security properties are expressed by the means of
queries.

Definition 1 A query is a pair (T, L) where T is a set
of terms and L a set of literals (both are not necessarily
ground).

Intuitively, a query (7, L) is satisfied if there exists a substi-
tution € such that we can reach a state where the adversary
knows all terms in 76 and all literals in L6 are evaluated to
true.

Definition 2 A transition system (Q,qo,~) satisfies a
query (T, L) iff there exists a substitution 6 grounding for
Q and a state (S, V') € Q such that qo~*(S, V), TO C S,
and for any ¢ € L0 we have that

o ifl = a(t) then (a,t) € dom(V) and V(a,t) =T,
o if { = —a(t) then (a,t) € dom(V) and V(a,t) = L.

Example 3 7o illustrate our formal model, we will describe
how the Decrypt/Wrap attack of Figure 1 is reflected in
this model. We consider the signature Yen. and the set



of attributes A given in Example 1, a set of names N D
{n1,na, ki, ka}, a set of variables X O {x1,y1,%2,y2}. We
only use the rules \Wrap (sym/sym) and SDecrypt of Fig-
ure 2. Suppose that

e So = {h(n1, ki), h(na, ka)}, and

o Vy is such that Vo(wrap,ny) = Vy(decrypt,ny) =
Vo(sensitive, ny) = Vp(extract,n1) = T and all other
attributes of ny and ny are mapped to 1.

Then we have that

(S0, Vo)~ (So U {senc(ki, ka)}, Vo) &' (51, V4)
~ (SlLJ{kl},Vl)

which implies that the query ({h(x,y),y}, sensitive(x)) is

satisfied with the substitution § = {x — n1, y — kq }.

4 Decidability

In this section, we first define the class of well-moded
rules, using the notation introduced in Section 3.2. In this
class, when checking the satisfiability of a query, we show
that it is correct to restrict the search space and only con-
sider well-moded terms (Theorem 1). The notion of mode
is inspired from [2]. It is similar to the idea of having well-
typed rules, we but we prefer to call them well-moded to
emphasize that we do not have a typing restriction. For the
rules given in Figure 2 that model a part of PKCS#11, the
notion of mode we consider allows us to bound the size
of terms involved in an attack. Unfortunately, the secrecy
problem is still undecidable in this setting. Therefore we
restrict ourselves to a bounded number of nonces (see Sec-
tion 4.3).

4.1 Preliminaries

In the following we consider a set of modes Mode and
we assume that there exists a mode function:

M:XUA x N — Mode

such that M( f, 7) is defined for every symbol f € X U.A and
every integer i such that 1 < ¢ < ar(f). We also assume
that the function sig : X U AU X UN — Mode returns the
mode to which a symbol f belongs. As usual, we extend
the function sig to terms as follows:

sig(t) = sig(top(1))-
We will use a rule-based notation f : my X ...m,, — m
foreach f € YU Aand u : m foru € N U X to define
the functions M and sig: M(f,4) = m; for 1 < i < n and
sig(f) = m and sig(u) = m.
We say that a position p # € of a term ¢ is well-moded
if p = p'.i and sig(t|,) = M(top(t|p),). In other words

the position in a term is well-moded if the subterm at that
position is of the expected mode w.r.t. to the function sym-
bol immediately above it. If a position is not well-moded,
it is ill-moded. By convention, the root position of a term is
ill-moded. A term is well-moded if all its non root positions
are well-moded. A literal a(t) (resp. —a(t)) is well-moded
if a(t) is well-moded. This notion is extended as expected
to sets of terms, rules, queries and states. For a state (S, V),
we require that the partial function V' : A x T(X, N) is
well-moded, i.e. for every (a,t) € dom(V'), we have that
a(t) is well-moded.

Note that any term can be seen as a well-moded term
if there is a unique mode, e.g. Msg, and any symbol f €
Y UAUX UN is such that

f:Msg x ... x Msg — Msg.
However, we will use modes which imply that the message

length of well-moded terms is bounded which will allow us
to reduce the search space.

Example 4 We consider the following set of modes:
Mode = {Cipher, Key, Seed, Nonce, Handle, Attribute}.

The following rules define the mode and signature functions
of the associated function symbol:

h : Nonce x Key — Handle
senc : Key x Key — Cipher
aenc : Key x Key — Cipher
pub : Seed — Key
priv. : Seed — Key
a : Nonce — Attribute forallaec A
X1,X2,Nn1,n2 : Nonce
yi,y2, ki, ko @ Key
z,s : Seed
The rules described in Figure 2 are well-moded w.r.t. the
mode and signature function described above. This is also
the case of the following rules which represent the deduc-
tion capabilities of the attacker:

y1, y2 — senc(y1,Yy2)
senc(yr,y2), y2 — V1
y1, Y2 — aenc(yr,ya)
aenc(yy, pub(z)), priv(z) — 1
aenc(yy, priv(z)), pub(z) — 1
z — pub(z)

4.2 Existence of a well-moded derivation

We now show that in a system induced by well-moded
rules, only well-moded terms need to be considered when
checking for the satisfiability of a well-moded query. In the
following, we assume a given mode and signature function.
By a slight abuse of notation, we consider dom (V') as a
subset of terms built on ¥ U A and N, i.e. dom(V) =
{a(t) | a x t € dom(V)}.



The key idea to reduce the search space to well-moded
terms is to show that whenever a state (S, V') is reachable
from an initial well-moded state, we have that:

e the partial function V' is necessarily well-moded
(Lemma 1), and

e any ill-moded term v’ occurring in a term in S is itself
deducible (Lemma 2).

Lemma 1 Let R be a set of well-moded rules and (Sy, Vp)
be a well-moded state. Let (S,V) be a state such that
(S0, Vo) ~* (S, V). We have that V is well-moded.

Lemma 2 Let R be a set of well-moded rules and (Sy, Vp)
be a well-moded state. Let (S,V') be a state such that
(S0, Vo) ~* (S,V). Letv € S and v’ be a subterm of v
which occurs at an ill-moded position. Then, we have that
v e Ss.

Both lemmas are proved by induction on the length & of
the derivation:

(507%) ~ (S1,V1) RAAEER G (Skavk) = (57 V)
The detailed proofs are available in [8].

Before we prove our main result, that states that only
well-moded terms need to be considered when checking for
satisfiability of well-moded queries, we introduce a trans-
formation which transforms any term to a well-moded term.
We show that when we apply this transformation to a deriva-
tion, we obtain again a derivation.

We define for each mode m € M a function =™ over

ground terms that replaces any ill-moded subterm by a well-
moded term, say t,, of the expected mode. In the remain-
der, we assume given those terms ¢, (one per mode).

Definition 3 (™ , ™) For each mode m € M we define in-
ductively a function =™ as follows:

onm:{? ifn € N and sig(n) = m

otherwise
m fr™, .. o,™)
o flv,...,vn) = iff:myx...m, —m
tm otherwise

The function = is defined as T = v 58(").

Those functions are extended to sets of terms as ex-
pected. Note that, by definition, we have that ™ is a well-
moded term of mode m and w is a well-moded term of mode

sig(u).

In Proposition 1 we show that this transformation allows
us to map any derivation to a well-moded derivation. This

well-moded derivation is obtained by applying at each step
the same rule, say R. However, while the original derivation
may use an instance R# of this rule the transformed deriva-
tion will use the instance R#’, where ¢’ is obtained from 6
as described in the following lemma.

Lemma 3 Let v be a well-moded term and 6 be a ground-
ing substitution for v. Let 0 be the substitution defined as
follows:

e dom(0) = dom(6), and
o 20 = 20" for x € dom(0").
We have that v8°*" = vg’.

The proof is done by structural induction on v. Details are
given in [8].

Proposition 1 Let R be a set of well-moded rules. Let
(So, Vo) be a well-moded state and consider the derivation:

(S0, Vo) ~ (S1, Vi) ~ oo~ (Sk, V).

Moreover, for each mode m € {sig(t) |t € T(X,N)}, we
assume that there exists a term of mode m such that t,, € Sy
and = is defined w.r.t. to these ty,’s.

We have that (Sy, Vo) ~ (S1,V1) ~ ...~ (Sk, Vi) by
using the same rules (but different instances).

Proof. We show this result by induction on k.
Base case: k = 0. In such a case the result is obvious.
Induction step: k > 0. In such a case, we have that

(S0, Vo) ~* (Sk—1,Vik—1) ~ (Sk, Vi)
By induction hypothesis, we know that
(S0, Vo) ~* (Sk—1, Vi—1).
To conclude, it remains to show that
(Sk—1, V1) ~ (Sk, Vi)

By hypothesis, we have that (Sk_1, Vi—1) ~ (Sk, V) with
a fresh renaming of a well-moded rule in R, say:

R: t1,.. sty L= ug,. .. up, L.

This means that there exists a substitution 6 such that
o t;0 e S,_1forl <i<n,
e forall a(t) € LO, Vi_1(a,t) = T, and

e forall —a(t) € LO, Vi_1(a,t) = L.



We show that (Sy_1,Vi_1) ~ (Sk, Vi) by using

the rule R and the substitution 6’ obtained from 6 a_s(ir)l
—sig(z

Lemma 3, i.e. dom (') = dom(0) and 20" = x0
for any x € dom(9).

Thanks to Lemma 3, for any well-moded term v, we have

that w95 = 4¢’. Moreover, the only case where vf #

v6°%") is when v is a variable, say z, and sig(x) # sig(zf).

Thus, we are in one of the following cases
e cither v0 = v8’, or
e v is avariable say x and 20" = L4 () € So.

Now, it is easy to see that:

e for each t;, since t;0 € Si_1 and tgg(z) € Sk—1, We
have tT& € Sk—1 and thus ¢;6' € S,_1;

e for each a(u) € L (resp. —a(u) € L), since a(u)
cannot be a variable, we have that a(uf) = a(uf’).
Thanks to Lemma 1, we know that V;._; and V}, are
necessarily well-moded. Hence we have that a(u)f =
a(uw)d’ for any (—)a(u) € LUL'.

We deduce that we can apply the same rule R with the
substitution 6. Let (S’, V') be the resulting state. It re-
mains to show that (S’, V') = (S, Vi).

Since we have that a(u)f = a(u)6’ for any (—)a(u) €
L U L', the valuation is updated in the same way, hence
V' = V,. To show that S’ = S, the only problem-
atic case is when u; is a variable, say x, and sig(z) #
sig(x6). By hypothesis we have that vars({uq,...,up}) C
vars({t1,...,t,}). This allows us to deduce that x €
vars({t1,...,tn}). Hence 28 € st(v) at an ill-moded po-
sition in v for some v € Si_;. By Lemma 2, we deduce
that 20 € Si_1, hence 20 € Sj,_; and thus ujf € S’ since
Sk—1 C 5. O

By relying on Proposition 1, it is easy to prove the fol-
lowing result.

Theorem 1 Let R be a set of well-moded rules. Let gy =
(So, Vo) be a well-moded state such that for each mode m €
{sig(t) | t € T(X,N)}, there exists a term t,, € Sy of
mode m. Let QQ be a well-moded query that is satisfiable.
Then there exists a well-moded derivation witnessing this
fact.

4.3 Decidability result

Unfortunately, Theorem 1 by itself is not very infor-
mative. As already noted, it is possible to have a sin-
gle mode Msg which implies that all derivations are well-
moded. However, the modes used in our modelling of

PKCS# 11 (see Example 4) imply that all well-moded terms
have bounded message length. It is easy to see that well-
moded terms have bounded message length whenever the
graph on modes that is defined by the functions M and sig is
acyclic (the graph whose set of vertices is Mode with edges
between modes m; (1 < ¢ < n) and m whenever there ex-
istsarule f:my X ... X mg — m).

However, bounded message length is not sufficient for
decidability. Indeed, undecidability proofs [10, 15] for
security protocols with bounded message length and un-
bounded number of nonces are easily adapted to our setting.

We only need to consider rules of the form T’ T
(no literal) to realize their encodings of the Post Correspon-
dence Problem. Therefore we bound the number of atomic
data of each mode, and obtain the following corollary of
Theorem 1:

new n

Corollary 1 Let R be a set of well-moded rules such that
well-modedness implies a bound on the message length. Let
g0 = (S0, Vo) be a well-moded state such that for each
mode m € {sig(t) | t € T(X,N)}, there exists a term
tm € So of mode m. The problem of deciding whether the
query Q is satisfiable is decidable when the set of names N'
is finite.

Our main application is the fragment of PKCS#11 de-
scribed in Figure 2. Thanks to this Corollary, we are able
to bound the search space and to realize some experiments
with a well-known model-checker, NuSMYV, [3].

S Analysing PKCS#11

In this section, we describe the implementation of the de-
cision procedure arising from the decidability result (Corol-
lary 1) for a bounded number keys and handles. As ex-
plained in Section 1, our formal work was primarily moti-
vated by the example of RSA PKCS#11, which is widely
deployed in industry, but other APIs such as the API of
the Trusted Platform Module (TPM) will also require global
mutable state to be modelled.

PKCS#11 is described in a large and complex specifica-
tion, running to 392 pages. We model here only the key
management operations at the core of the API. We omit the
DeriveKey command, all of the commands from the ses-
sion, object, slot and token management function sets, the
digest, signing and verification functions, and the random
number generating functions. We assume, as suggested in
PKCS#11 [13, p. 31] that the intruder is able to freely hijack
user sessions, and is thus able to send arbitrary sequences of
commands to the interface with arbitrary parameters from
his knowledge set. Following on from our theoretical work,
we further assume only a fixed bounded number of handles
are available, and a bounded number of atomic keys. We do



not a priori bound the number of times each command may
be executed, but this is implicitly bounded by the finite vo-
cabulary of well-moded terms available, since a rule will not
be executed twice with exactly the same state and intruder
knowledge inputs. Finally, note that we model the setting of
attributes of keys stored on the device via a series of rules:
one to set and one to unset each attribute. In the real API,
there is a single command C_SetAttributeValues, to
which the new values for the attributes are supplied as pa-
rameters. We found it more convenient to encode this in
separate commands to facilitate the addition of constraints
to certain attribute setting and unsetting operations.

5.1 Methodology

As we described in Section 1, PKCS#11 is a standard
designed to promote interoperability, not a tightly defined
protocol with a particular goal. As such, the aim of our
experiments was to analyse a number of different configu-
rations in order to validate our approach. Roughly speaking,
our methodology was to start with a configuration involving
only symmetric keys, and continue to restrict the API until a
secure configuration was found. We then added asymmetric
keypairs, and repeated the process. Finally we carried out
some experiments modelling the algebraic properties of the
ECB mode of encryption.

5.2 Generating propositional models

By Theorem 1, once we have bounded the number of
handles and keys, we only have to consider a finite set of
possible terms in the intruder’s knowledge. Our approach
is to encode each possible term as a propositional vari-
able, which will be true just when the term is in the in-
truder’s knowledge set. In addition to this, we have the
attributes that constitute the state of the system. Since we
have bounded the number of handles, and we need only con-
sider attributes applied to handles by our well-modedness
result, we can also encode the state as a finite number of
propositional variables: one for each attribute applied to
each handle. A variable is true when the attribute is set for
that handle.

We can now generate a propositional model for the API
by generating all the ground instances of the API rules, and
compiling these to our propositional encoding. This is cur-
rently done by a Perl script, which accepts parameters defin-
ing the exact configuration to be modelled. A configuration
is defined by:

1. the number of symmetric keys, the number of asym-
metric key pairs, and the number of available handles
for each key;

2. the initial knowledge of the intruder;

3. the initial state of the attributes.

Note that having set the number of handles available, we
are able to pre-compute the names of the handles rather than
having to generate fresh names during the unwrap and gen-
erate commands. Since all commands which generate fresh
handles return their values unencrypted, we can be sure that
a handle is fresh when is it is generated in a command sim-
ply by checking that it is not yet known to the intruder. As a
further optimisation, we include handles for all the keys the
intruder can generate in a particular configuration in his ini-
tial knowledge, and remove the key generation commands.

To facilitate the generation of the models for our pro-
gram of experiments, our scripts also accept the following
parameters:

1. A list of sticky attributes, i.e. those which, once set,
cannot be unset, and those which once unset, cannot
be set. Footnotes 11 and 12 in the PKCS standard
mark these attributes [13, Table 15]. We add further
attributes to the list during our experiments, as detailed
below. Adding an attribute to the list causes the gener-
ation script to omit the appropriate Set or Unset com-
mands from the model.

2. A list of conflicting attributes, i.e. for each attribute a
a list of conflicting attributes a, ap, . . . such that for a
given handle h(n, k), attribute a may not be set on that
handle if any of the a; are also set. Adding attributes to
this list causes the script to add appropriate conditions
to the left hand side of the Set rules.

The propositional encoding of the API model is gener-
ated in a syntax suitable for the model checker NuSMYV, [3].
We then ask NuSMYV to check whether a security property
holds, which is a reachability property in our transition sys-
tem. In all our experiments we are concerned with a single
security property, the secrecy of sensitive keys.

5.3 Experiments with PKCS#11

All the files for our experiments are available
via http from http://www.lsv.ens-cachan.fr/
“steel/pkcsll. We describe each experiment below
and summarise in Table 1. In the figures describing at-
tacks, we sometimes omit the values of attributes whose
value is inconsequential to the attack, for the sake of clarity.
Similarly, we omit unused terms from the intruder’s initial
knowledge.

Experiment 1. In our first four experiments, we model
a PKCS#11 configuration with 3 symmetric keys: one is
a sensitive key, ki, stored on the device, for which the in-
truder knows the handle but not the true value of the key.



The second, k», is also loaded onto the device, and the in-
truder has a handle but not the true value. The third is the
intruder’s own key, ks, which is not loaded onto the device
in the initial state. We start with a configuration in which the
only restrictions on attribute setting and unsetting are those
described in the manual. As expected, we immediately re-
discover Clulow’s key separation attack for the attributes
decrypt and wrap (see Figure 1).

Experiment 2. We modify the configuration from Exper-
iment 1 by applying Clulow’s first suggestion: that attribute
changing operations be prevented from allowing a stored
key to have both wrap and decrypt set. Note that in order
to do this, it is not sufficient merely to check that decrypt is
unset before setting wrap, and to check wrap in unset be-
fore setting decrypt. One must also add wrap and decrypt
to the list of sticky attributes which once set, may not be
unset, or the attack is not prevented, [16]. Having applied
these measures, we discovered a previously unknown at-
tack, given in Figure 3. The intruder imports his own key k3
by first encrypting it under kj, and then unwrapping it. He
can then export the sensitive key kj under k3 to discover its
value.

Initial state: The intruder knows the handles h(ny, k),
h(ng, ko) and the key ks; np has the attributes sensitive
and extract set whereas n, has the attributes unwrap and
encrypt set.

Trace:
SEncrypt: h(na, k), ks —  senc(ks, ka)
Unwrap: h(ny, kz), senc(ks, ka) e, h(ns, ks)
Set_wrap: h(ns,ks) —  wrap(ns)
Wrap: h(ns, ks), h(n1, k1) —  senc(ky, ks)
Intruder: senc(ky, k3), ks — ki

Figure 3. Attack discovered in Experiment 2

Experiment 3. To prevent the attack shown in Figure 3,
we add encrypt and wrap to the list of conflicting attribute
pairs. Another new attack is discovered (see Figure 4) of
a type discussed by Clulow, [4, Section 2.3]. Here the in-
truder key k; is first wrapped under k; itself, and then un-
wrapped, gaining a new handle h(ns, k). The intruder then
wraps ki under ko, and sets the decrypt attribute on han-
dle h(ns, ky), allowing him to obtain kj.

Experiment 4. We attempt to prevent the attack in Fig-
ure 4 by adding wrap and unwrap to our list of conflicting
attribute pairs. We find no attack with respect to our model,

Initial state: The intruder knows the handles h(ny, ky),
h(na, ko) and the key ks; n; has the attributes sensitive,
extract and whereas n, has the attribute extract set.

Trace:

Set_wrap: h(na,ka) —  wrap(ng)
Wrap: h(na,ka),h(nz,ka)  —  senc(ky, ko)
Set_unwrap: h(nz,ka) —  unwrap(nz)
Unwrap: h(ny, ka),senc(ka, k) ™ h(ng, ko)
Wrap: (nz,kz),h(nl,kl) — senc(kl,kz)
Set_decrypt: h(ns,ka) —  decrypt(ng)
SDecrypt h(nz7 kz) senc(kl, k2) — kq

Figure 4. Attack discovered in Experiment 3

even when the model is extended up to 4 possible handles
for each key. We now proceed to add asymmetric keypairs.

Experiment 5. We now add two asymmetric keypairs to
the model. One, (pub(s;), priv(s1)), is loaded onto the de-
vice and is unknown to the intruder (apart from the handle).
The other, (pub(s,), priv(sz)), is the intruder’s own keypair,
but is not loaded on to the device. We now rediscover Clu-
low’s Trojan Wrapped Key attack, [4, Section 3.5]. Note
that in a model with explicit destructors for decryption, a
similar attack would be found on the configuration in ex-
periment 4. Extending our model to deal with this is an area
for further work (see section 6). We also note that Clulow’s
other Trojan Key attack, [4, Section 3.4], is now no longer
possible: Clulow analysed version 2.01 of the standard, and
observed that the Wrap command accepts a clear public key
as input, allowing a Trojan Public Key attack - the intruder
generates his own keypair, and then supplies the public key
as a wrapping key. In the current version of the standard
(2.20), the command accepts only a handle for a public key,
which must be loaded on to the device.

Experiment 6. Version 2.20 of the PKCS#11 stan-
dard includes a new feature intended to improve secu-
rity: trusted keys. Two more attributes are introduced:
wrap_with_trusted and trusted. In addition to testing that
a key to be wrapped is extractable, Wrap now tests that
if the key to be wrapped has wrap_with_trusted set, then
the wrapping key must have trusted set. Only the secu-
rity officer (SO) can mark a key as trusted. Additionally,
wrap_with_trusted is a sticky attribute - once set, it may not
be unset.

This mechanism would appear to have some potential: as
long as the security officer only logs into the device when it
is connected to a trusted terminal, he should be able to keep
his PIN secure, and so be able to control which keys are



marked as trusted. We took our configuration from Exper-
iment 5, and added the trusted key features, marking n; as
wrap_with_trusted, and n; as trusted. We discover another
attack, given in Figure 5. Here, the intruder first attacks the
trusted wrapping key, and then obtains the sensitive key.

Initial state: The intruder knows the handles h(n, k1),
h(na, ko) and the key ks; n; has the attributes sensi-
tive, extract and wrap_with_trusted whereas n, has the
attributes extract and trusted set. The intruder also
knows the public key pub(s;) and its associated handle
h(ns, priv(s1)); n3 has the attribute unwrap set.

Trace:
Intruder: ks, pub(s;) —  aenc(ks, pub(sy))
Set_unwrap: h(ns,priv(sy)) —  unwrap(n3)
Unwrap: aenc(ks, pub(s1)) ™ h(ng, k3)

h(ns, priv(s1))

Set_wrap: h(ns,ks) —  wrap(ng)
Wrap:  h(ng, ks),h(n2, ko)  —  senc(ka, k3)
Intruder: SenC(kz,k3) ks — ko
Set_wrap: h(na,k2) —  wrap(np)
Wrap:  h(na,ka2),h(n1, ki)  —  senc(ky, ko)
Intruder:  senc(ky, ko), ko  — ki

Figure 5. Attack discovered in Experiment 6

Experiment 7. In Experiment 7 we prevent the attack in
Figure 5 by marking n, as wrap_with_trusted. We obtain a
configuration which is secure in our model.

Experiment 8. We extend the initial state from
Experiment 7 by setting the attributes trusted
and wrap_with_trusted for the public keypair

(priv(sy), pub(s1)).  Our security property continues

to hold in this model.

Experiment 9. Clulow has shown vulnerabilities in
PKCS#11 arising from the use of double length 3DES keys
and electronic code book (ECB) mode encryption. We ex-
tended our model to capture the properties of ECB using
the rules in Figure 6, introducing the symbol spenc for en-
cryption of pairs, and modelling the assumption that single-
length DES keys can be cracked by brute force. Note that
these rules are still well-moded. In a model with three
atomic keys and two double-length keys, we rediscover Clu-
low’s weaker key attack, [4, Section 2.4].

Experiment 10. In Experiment 10, we prevent Clulow’s
weaker key attack by disallowing the wrap command for
accepting a single length key to wrap a double length key.
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Additional Intruder Rules:

Y1, Y2 pair(y1,y2)
pair(y1,y2) y1
pair(y1, y2 y2

spenc(pair(y1,y2),y3)
senc(y1,ys3)
senc(yz,y3)

)
senc(y1,y3),senc(yz, y3)
spenc(pair(y1,y2),ys)
spenc(pair(y1,y2),y3)

Lol Lrbbd

SenC(Y1,Y2) Y1 Y2
senc(y1,y1) Y1
Modes:
pair Key x Key — Pair
spenc Pair x Key —  CipherPair

Figure 6. Additional Intruder Rules (ECB)

‘We now rediscover Clulow’s ECB based attack, [4, Section
2.2].

As Table 1 shows, run times vary from a few seconds to
a few minutes. However, we note that increasing the size of
the model by adding more handles often leads to a model
larger than NuSMYV can store in our compute server’s 4Gb
of RAM. The largest models in Table 1 (no. s 5, 6, 7 and
8) have 128 variables. This is an area for future work: see
Section 6.

Our experiments give an idea of how difficult
the secure configuration of a PKCS#11 based API
is. The interested reader is invited to download
the scripts from http://www.lsv.ens-cachan.
fr/ “steel/pkcsll and try out her own configurations.
The output from NuSMYV for each experiment is available
at the same address. One can see that extracting an attack
from a counterexample trace is a straightforward process.

Giving specific advice on the use of such a general-
purpose interface is impossible, but we have seen that for
the particular models under investigation here, a secure con-
figuration of PKCS#11 must include wrap/decrypt, un-
wrap/encrypt, and wrap/unwrap as conflicting attributes.
Additionally, the trusted keys mechanism should be em-
ployed, and all keys with trusted set must also have
wrap_with_trusted set. As a final caveat, we note that Clu-
low’s paper gives a number of vulnerabilities that take ac-
count of particular details of the cryptographic algorithms
in use. Our symbolic analysis is at a higher level of abstrac-
tion and security at our level is no guarantee of security from
these lower level vulnerabilities.

6 Conclusion

In summary, we have presented a model for the anal-
ysis of security APIs with mutable global state, such as
PKCS#11. We have given a well-modedness condition for
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Table 1. Summary of Experiments. Times taken on a Linux 2.6.20 box with a 3.60GHz processor.
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the API that leads to decidability of secrecy properties when
the number of fresh names is bounded. We have formalised
the core of PKCS#11 in our model, and used an automated
implementation of our decision procedure to both discover
some new attacks, and to show security (in our bounded
model) of a number of configurations.

Related work. We are aware of three previous efforts to
formally analyse configurations of PKCS#11. Youn [17]
used the first-order theorem prover Otter, and included only
the commands needed for Clulow’s first attack (Figure 1).
This model had one handle for each key, preventing the
discovery of attacks like that in Figure 4, and a monotonic
model of state, since predicates T'(z, s) specifying that x is
true in state s persist after state changes. This would allow
an intruder to take two mutually exclusive steps from the
same state, permitting false attacks. Tsalapati [16] used the
AVISPA protocol analysis tools, included all the key man-
agement commands, but also used a monotonic model of
state, and one handle for each key. She rediscovered a num-
ber of Clulow’s attacks, but the limitations of the model pre-
vented the discovery of the attacks we have shown here. In
unpublished work, Steel and Carbone adapted Tsalapati’s
models to account correctly for non-monotonic state, us-
ing the sets supported by the AVISPA modelling language.
However, the number of sessions and hence command calls
had to be bounded, and for non-trivial bounds, the perfor-
mance of the AVISPA back-ends rapidly deteriorated. The
model we have descibed in this paper accounts for non-
monotonic mutable global state, allows analysis for un-
bounded sessions (although we bound the number of atomic
data), and has shown reasonable performance as evidenced
by the discovery of new attacks and (bounded) verifications
for non-trivial models.

In future work, we aim to prove results allowing us to
draw conclusions about security of the unbounded model
while analysing a bounded number of keys and handles.
We also plan to cover more commands, more attributes,
and more algebraic properties of the operations used in
PKCS#11, in particular the explicit decryption operator.
This will require more theoretical work as well as optimi-
sations to our implementation to combat the combinatorial
explosion of possible intruder terms: adapting an existing
protocol analysis tool (preferably one which already sup-
ports state) to unbounded sessions and well-moded terms is
one possible approach.
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