
Approximate Query Answering on Sensor

Network Data Streams

Alfredo Cuzzocrea1, Filippo Furfaro2, Elio Masciari1, and Cristina Sirangelo2

1 ICAR-CNR – Institute of Italian National Research Council
{cuzzocrea, masciari}@isi.cs.cnr.it

2 DEIS-UNICAL
Via P. Bucci, 87036 Rende (CS) Italy

{furfaro, sirangelo}@si.deis.unical.it

Abstract. Sensor networks represent a non traditional source of infor-
mation, as readings generated by sensors flow continuously, leading to
an infinite stream of data. Traditional DBMSs, which are based on an
exact and detailed representation of information, are not suitable in this
context, as all the information carried by a data stream cannot be stored
within a bounded storage space. Thus, compressing data (by possibly
loosing less relevant information) and storing their compressed represen-
tation, rather than the original one, becomes mandatory. This approach
aims to store as much information carried by the stream as possible, but
makes it unfeasible to provide exact answers to queries on the stream
content. However, exact answers to queries are often not necessary, as
approximate ones usually suffice to get useful reports on the world mon-
itored by the sensors. In this paper we propose a technique for providing
fast approximate answers to aggregate queries on sensor data streams.
Our proposal is based on a hierarchical summarization of the data stream
embedded into a flexible indexing structure, which permits us to both
access and update compressed data efficiently. The compressed repre-
sentation of data is updated continuously, as new sensor readings arrive.
When the available storage space is not enough to store new data, some
space is released by compressing the “oldest” stored data progressively,
so that recent information (which is usually the most relevant to retrieve)
is represented with more detail than old one.

1 Introduction

Sensors are non-reactive elements which are used to monitor real life phenomena,
such as live weather conditions, network traffic, etc. They are usually organized
into networks where their readings are transmitted using low level protocols [8].
Sensor networks represent a non traditional source of information, as readings
generated by sensors flow continuously, leading to an infinite stream of data.
Traditional DBMSs, which are based on an exact and detailed representation
of information, are not suitable in this context, as all the information carried
by a data stream cannot be stored within a bounded storage space [2–4, 7, 1].
Moreover, traditional DBMSs are basically transaction oriented, i.e. their main



goal is to guarantee data consistency, and they do not pay particular attention
to query efficiency. The inefficiency of the query answering process is dramati-
cally evident in the computation of aggregate queries (sum, mean, count, etc.),
as accessing a huge amount of data is usually necessary to provide the correct
answer to this kind of query.
The issue of defining new query evaluation paradigms to provide fast answers
to aggregate queries is very relevant in the context of sensor networks. In fact,
the amount of data produced by sensors is very large and grows continuously,
and the queries need to be evaluated very quickly, in order to make it possi-
ble to perform a timely “reaction to the world” . Moreover, in order to make
the information produced by sensors useful, it should be possible to retrieve an
up-to-date “snapshot” of the monitored world continuously, as time passes and
new readings are collected. For instance, a climate disaster prevention system
would benefit from the availability of continuous information on atmospheric
conditions in the last hour. Similarly, a network congestion detection system
would be able to prevent network failures exploiting the knowledge of network
traffic during the last minutes. If the answer to these queries, called continuous

queries, is not fast enough, we could observe an increasing delay between the
query answer and the arrival of new data, and thus a not timely reaction to
the world. In this paper we propose a technique for providing fast approximate
answers to aggregate queries on sensor data streams. Our proposal is based on
a hierarchical summarization of the data stream embedded into a flexible in-
dexing structure, which permits us to both access and update compressed data
efficiently. The compressed representation of data is updated continuously, as
new sensor readings arrive. When the available storage space is not enough to
store new data, some space is released by compressing the “oldest” stored data
progressively, so that recent information (which is usually the most relevant to
retrieve) is represented with more detail than old one.

2 Problem Statement

Consider an ordered set of n sources (i.e. sensors) denoted by {s1, . . . , sn} pro-
ducing n independent streams of data, representing sensor readings. Each data
stream can be viewed as a sequence of triplets 〈ids, v, ts〉, where: 1) ids ∈ {1, .., n}
is the source identifier; 2) v is a non negative integer value representing the mea-
sure produced by the source identified by ids; 3) ts is a timestamp, i.e. a value
that indicates the time when the reading v was produced by the source ids.

The data streams produced by the sources are caught by a Sensor Data

Stream Management System (SDSMS), which combines the sensor readings into
a unique data stream, and supports data analysis.

An important issue in managing sensor data streams is aggregating the values
produced by a subset of sources within a time interval. More formally, this means
answering a range query on the overall stream of data generated by s1, . . . , sn.
A range query is a pair Q = 〈si..sj , [tstart..tend]〉 whose answer is the evaluation
of an aggregate operator (such as sum, count, avg, etc.) on the values produced
by the sources si, si+1, . . . , sj within the time interval [tstart..tend].



The sensor data stream can be represented by means of a two-dimensional
array, where the first dimension corresponds to the set of sources, and the other
one corresponds to time. In particular, the time is divided into intervals ∆tj of
the same size. Each element 〈si,∆tj〉 of the array is the sum of all the values
generated by the source si whose timestamp is within the time interval ∆tj . Ob-
viously the use of a time granularity generates a loss of information, as readings
of a sensor belonging to the same time interval are aggregated. Indeed, if a time
granularity which is appropriate for the particular context monitored by sensors
is chosen, the loss of information will be negligible.

Using this representation, an estimate of the answer to a sum range query
over 〈si..sj , [tstart..tend]〉 can be obtained by summing two contributions. The
first one is given by the sum of those elements which are completely contained
inside the range of the query (i.e. the elements 〈sk,∆tl〉 such that i ≤ k ≤ j
and ∆tl is completely contained into [tstart..tend]). The second one is given by
those elements which partially overlap the range of the query (i.e. the elements
〈sk,∆tl〉 such that i ≤ k ≤ j and tstart ∈ ∆tl or tend ∈ ∆tl). The first of these
two contributions does not introduce any approximation, whereas the second one
is generally approximate, as the use of the time granularity makes it unfeasible
to retrieve the exact distribution of values generated by each sensor within the
same interval ∆tl. The latter contribution can be evaluated by performing linear
interpolation, i.e. assuming that the data distribution inside each interval ∆ti is
uniform (Continuous Values Assumption - CVA). For instance, the contribution
of the element 〈s2,∆t3〉 to the sum query represented in Fig. 1 is given by
6−5
2 · 4 = 2.

Fig. 1. Two-dimensional representation of sensor data streams

As the stream of readings produced by every source is potentially “infinite”,
detailed information on the stream (i.e. the exact sequence of values generated
by every sensor) cannot be stored, so that exact answers to every possible range
query cannot be provided.
However, exact answers to aggregate queries are often not necessary, as approxi-
mate answers usually suffice to get useful reports on the content of data streams,
and to provide a meaningful description of the world monitored by sensors.
A solution for providing approximate answers to aggregate queries is to store a



compressed representation of the overall data stream, and then to run queries on
the compressed data. The use of a time granularity introduces a form of compres-
sion, but it does not suffice to represent the whole stream of data, as the stream
length is possibly infinite. An effective structure for storing the information car-
ried by the data stream should have the following characteristics: i) it should
be efficient to update, in order to catch the continuous stream of data coming
from the sources; ii) it should provide an up-to-date representation of the sensor
readings, where recent information is possibly represented more accurately than
old one; iii) it should permit us to answer range queries efficiently.
Our proposal. In this paper we propose a technique for providing (fast) ap-
proximate answers to aggregate queries on sensor data streams, focusing our
attention on sum range queries. Our proposal consists of a compressed repre-
sentation of the sensor data stream where the information is summarized in a
hierarchical fashion. In particular, a flexible indexing structure is embedded into
the compressed data, so that information can be both accessed and updated
efficiently.
In more detail, our compression technique is based on the following scheme:

– the sensor data stream is divided into “time windows” of the same size: each
window consists of a finite number of contiguous unitary time intervals ∆ti
(the size of each ∆ti corresponds to the granularity);

– time windows are indexed, so that windows involved in a range query can
be accessed efficiently;

– as new data arrive, if the available storage space is not enough for their rep-
resentation, “old” windows are compressed (or possibly removed) to release
the storage space needed to represent new readings, and the index is updated
to take into account the new data.

The technique used for compressing time windows is lossy, so that “recent”
data are generally represented more accurately than “old” ones. In Fig. 2, the
partitioning scheme of a stream into time windows is represented, as well as the
overlying index referring to all the time windows.

Fig. 2. A sequence of indexed time windows

3 Representing Time Windows

3.1 Preliminary Definitions

Consider given a two-dimensional n1 × n2 array A. Without loss of generality,
array indices are assumed to range respectively in 1..n1 and 1..n2. A block r (of
the array) is a two dimensional interval [l1..u1, l2..u2] such that 1 ≤ l1 ≤ u1 ≤ n1



and 1 ≤ l2 ≤ u2 ≤ n2. Informally, a block represents a “rectangular” region of
the array. We denote by size(r) the size of the block r, i.e. the value (u1−l1+1) ·
(u2−l2+1). Given a pair 〈v1, v2〉 we say that 〈v1, v2〉 is inside r if v1 ∈ [l1..u1] and
v2 ∈ [l2..u2]. We denote by sum(r) the sum of the array elements occurring in r,
i.e. sum(r) =

∑

〈i,j〉inside r A[i, j]. If r is a block corresponding to the whole array

(i.e. r = [1..n1, 1..n2]), sum(r) is also denoted by sum(A). A block r such that
sum(r) = 0 is called a null block. Given a block r = [l1..u1, l2..u2] in A, we denote
by ri the i−th quadrant of r, i.e. r1 = [l1..m1, l2..m2], r2 = [m1 + 1..u1, l2..m2],
r3 = [l1..m1,m2 + 1..u2], and r4 = [m1 + 1..u1,m2 + 1..u2]. where m1 = ⌊(l1 +
u1)/2⌋ and m2 = ⌊(l2+u2)/2⌋. Given a a time interval t = [tstart..tend] we denote
by size(t) the size of the time interval t, i.e. size(t) = tend − tstart. Furthermore
we denote by ti/2 the i-th half of t. That is t1/2 = [tstart..(tstart + tend)/2] and
t2/2 = [(tstart + tend)/2..tend]. Given a tree T , we denote by Root(T ) the root
node of T and, if p is a non leaf node, we denote the i−th child node of p by
Child(p, i). Given a triplet x = 〈ids, v, ts〉, representing a value generated by a
source, ids is denoted by ids(x), v by value(x) and ts by ts(x).

3.2 The Quad-Tree Window

In order to represent data occurring in a time window, we do not store directly
the corresponding two-dimensional array, indeed we choose a hierarchical data
structure, called quad-tree window, which offers some advantages: it makes an-
swering (portions of) range queries internal to the time window more efficient
to perform (w.r.t. a “flat” array representation), and it stores data in a straight
compressible format. That is, data is organized according to a scheme that can
be directly exploited to perform compression.

This hierarchical data organization consists of storing multiple aggregations
performed over the time window array according to a quad-tree partition. This
means that we store the sum of the values contained in the whole array, as well
as the sum of the values contained in each quarter of the array, in each eighth
of the array and so on, until the single elements of the array are stored. Fig.
3 shows an example of quad-tree window, where each node of the quad-tree is
associated to the sum of the values contained in the corresponding portion of
the time window array.

Fig. 3. A Time Window and the corresponding quad-tree partition

The quad-tree structure is very effective for answering (sum) range queries
inside a time window efficiently, as we can generally use the pre-aggregated sum



values in the quad-tree nodes for evaluating the answer (see Section 6.1 for more
details). Moreover, the space needed for storing the quad-tree representation of
a time window is about the same as the space needed for a flat representation, as
we will explain later. Furthermore, the quad-tree structure is particularly prone
to progressive compressions. In fact, the information represented in each node is
summarized in its ancestor nodes. Therefore, if we prune some nodes from the
quad-tree, we do not loose every information about the corresponding portions
of the time window array, but we represent them with less accuracy.

We will next describe the quad-tree based data representation of a time
window formally. Denoting by u the time granularity (i.e. the width of each
interval ∆tj), let T = n · u be the time window width (where n is the number
of sources). We refer to a Time Window starting at time t as a two-dimensional
array W of size n×n such that W [i, j] represents the sum of the values generated
by a source si within the j−th unitary time interval of W . The whole data stream
consists of an infinite sequence W1,W2, . . . of time windows such that the i−th
one starts at ti = (i − 1) · T and ends at ti+1 = i · T . In the following, for the
sake of presentation, we assume that the number of sources is a power of 2 (i.e.
n = 2k, where k > 1).

A Quad-Tree Window on the time window W , called QTW (W ), is a full
4−ary tree whose nodes are pairs 〈r, sum(r)〉 (where r is a block of W ) such
that:

1. Root(QTW (W )) = 〈[1..n, 1..n], sum([1..n, 1..n])〉;
2. each non leaf node q = 〈r, sum(r)〉 of QTW (W ) has four children rep-

resenting the four quadrants of r; That is, Child(q, i) = 〈ri, sum(ri)〉 for
i = 1, . . . , 4.

3. the depth of QTW (W ) is log2n + 1.

Property 3 implies that each leaf node of QTW (W ) corresponds to a single
element of the time window array W . Given a node q = 〈r, sum(r)〉 of QTW (W ),
r is referred to as q.range and sum(r) as q.sum.

The space needed for storing all the nodes of a quad-tree window QTW (W ) is
larger than the one needed for a flat representation of W . In fact, it can be easily

shown that the number of nodes of QTW (W ) is 4·n2−1
3 , whereas the number of

elements in W is n2. Indeed, QTW (W ) can be represented compactly, exploiting
the hierarchical structure of the quad-tree partition and the possible sparsity of
data in a time window (i.e. the possible presence of null blocks in the quad-tree
window). It can be shown that, if we use 32 bits for representing a sum, the largest
storage space needed for a quad-tree window is Smax

QTW = (32+8/3)n2 − 2/3 bits
(assuming that the window does not contain any null value).

3.3 Populating Quad-Tree Windows

In this section we describe how a quad-tree window is populated as new data
arrive. Let Wk be the time window associated to a given time interval [(k − 1) ·
T..k ·T ] and QTW (Wk) the corresponding quad-tree window. Let x = 〈ids, v, ts〉
be a new sensor reading such that ts is in [(k − 1) · T..k · T ]. We next describe
how QTW (Wk) is updated on the fly, to represent the changes in Wk.



Let QTW (Wk)old be the quad-tree window representing the content of Wk

before the arrival of x. If x is the first received reading whose timestamp belongs
to the time interval of Wk, QTW (Wk)old consists of a unique null node (the
root). An algorithm for updating a quad-tree window on a reading arrival can
work as follows. The algorithm takes as arguments x and QTW (Wk)old, and
returns the up-to-date quad-tree window Qnew on Wk. First, the old quad-tree
window QTW (Wk)old is assigned to Qnew. Then, the algorithm determines the
coordinates 〈ids, j〉 of the element of Wk which must be updated according to
the arrival of x, and visits Qnew starting from its root. At each step of the visit,
the algorithm processes a node of Qnew corresponding to a block of Wk which
contains 〈ids, j〉. The sum associated to the node is updated by adding value(x)
to it (see Fig. 4). If the visited node was null (before the updating), it is split into
four new null children. After updating the current node (and possibly splitting
it), the visit goes on processing the child of the current node which contains
〈ids, j〉. Algorithm ends after updating the node of Qnew corresponding to the
single element 〈ids, j〉.

0 0 0

5

5

0

0 0

(S1, , 1 )5 sec
(S2, 6, 1.5 )sec

0 0 0

11

5 6 0 0

5 11

(S4, 9, 3 )sec

0 0

20

5 6 0 0

11 9

0 00 9

5 0 0 0

0 0 0 0

0 0 0 0

0 sec

0 0 0 0

S1

S2

S3

S4

8 sec

Dt

0 0 0 0

0 0 0 0

0 0 0 0

1

0 sec

0 0 0 0

S1

S2

S3

S4

8 sec

}

2 sec

5 0 0 0

6 0 0 0

0 0 0 0

0 sec

0 0 0 0

S1

S2

S3

S4

8 sec

5 0 0 0

6 0 0 0

0 0 0 0

0 sec

0 9 0 0

S1

S2

S3

S4

8 sec

0

Dt2 Dt3 Dt4Dt Dt Dt DtDt1 Dt2 Dt3 Dt4Dt Dt Dt Dt Dt1 Dt2 Dt3 Dt4Dt Dt Dt Dt Dt1 Dt2 Dt3 Dt4Dt Dt Dt Dt

0

26

5 6 0 0

11 9

0 00 9

5 0 0 0

6 0 0 0

0 0 6 0

0 sec

0 9 0 0

S1

S2

S3

S4

8 sec

Dt1 Dt2 Dt3 Dt4Dt Dt Dt Dt

(S3, 6, 5 )sec

6

00 06

Time Window Time Window Time Window Time Window Time Window

Quad Tree Window

Quad Tree Window Quad Tree Window Quad Tree Window Quad Tree Window

Fig. 4. Populating a quad-tree window

4 The Multi-Resolution Data Stream Summary

A quad-tree window represents the readings generated within a time interval
of size T . The whole sensor data stream can be represented by a sequence of
quad-tree windows QTW (W1), QTW (W2), . . .. When a new sensor reading x
arrives, it is inserted in the corresponding quad-tree window QTW (Wk), where
ts(x) ∈ [(k − 1) · T..k · T ]. A quad-tree window QTW (Wk) is physically created
when the first reading belonging to [(k − 1) · T..k · T ] arrives.

In this section we define a structure that both indexes the quad-tree win-
dows and summarizes the values carried by the stream. This structure is called
Multi-Resolution Data Stream Summary and pursues two aims: 1) making range
queries involving more than one time window efficient to evaluate; 2) making
the stored data easy to compress.
We propose the following scheme for indexing quad-tree windows:
1. time windows are clustered into groups C1, C2, . . . ; each cluster consists of

K contiguous time windows, thus describing a time interval of size K · T ;
2. quad-tree windows inside each cluster Cl are indexed by means of a binary

tree denoted by BTI(Cl);



3. the whole index consists of a list linking BTI(C1), BTI(C2), . . ..

We next focus our attention on describing the structure of a single index BTI(Cl).
Then, we show how the whole index overlying the quad-tree windows is built.

4.1 Indexing a Cluster of Quad-Tree Windows

Consider the l-th cluster Cl of the sequence representing the whole sensor data
stream. Cl corresponds to the time interval [(l − 1) · K · T..l · K · T ] which will
be denoted by ∆T (Cl). We fix the value of K to a power of 2.

A Binary Tree Index on Cl, is denoted by BTI(Cl) and is a full binary tree
whose nodes are pairs 〈t, s〉, with t a time interval and s a sum, such that:

1. Root(BTI(Cl)) = 〈∆T (Cl), sum(∆T (Cl))〉 where sum(∆T (Cl)) is the sum
of the values generated within ∆T (Cl) by all the sources, i.e. sum(∆T (Cl)) =
∑

(l−1)·K<i≤l·K sum(Wi)

2. each non leaf node q = 〈t, s〉 of BTI(Cl), with t = [j1T..j2T ], has two child
nodes corresponding to the two halves of t, that is Child(q, i) = 〈ti/2, si/2〉,
i = 1, 2, where ti/2 is the i−th half of t, and si/2 is the sum of all the readings
generated within ti/2 by all the sources.

3. the depth of BTI(Cl) is log2K, that is each leaf node of BTI(Cl) corresponds
to a time interval of size 2T .

4. each leaf node q = 〈t, s〉 of BTI(Cl), with t = [j1T..j2T ] (j2 − j1 = 2), refers
to the two quad-tree windows in t (i.e. QTW (Wi), j1 < i ≤ j2).

Given a node q = 〈t, s〉 of BTI(Cl), t and s are referred to as q.interval
and q.sum, respectively. Moreover q.range denotes the two-dimensional range
〈s1..sn, t〉.

In the same way as quad-tree windows, binary tree indices can be stored in
a compact fashion as well. The largest space consumption of a binary tree index
(embedding its referred QTWs) can be shown to be Smax

BTI = (32+8/3) ·K ·n2 +
(52/3) · K − 2 bits.

4.2 Constructing and Linking Binary Tree Indices

Binary tree indices can be constructed dynamically, as new data arrive and
new quad-tree windows are created. An algorithm for constructing a binary tree
index follows the same strategy as the algorithm described in Section 3.3, and,
in particular, uses that algorithm for populating the indexed quad-tree windows.
The resulting algorithm consists in a function which takes as arguments a “new”
reading x and the binary tree index BTI(Cl) where x is in ∆T (Cl), and updates
both the index and the underlying quad-tree windows.

The overall index on the sensor data stream is obtained by linking together
BTI(C1), BTI(C2), . . ., i.e. the binary tree indices corresponding to consecu-
tive clusters. In particular, when a new sensor reading x arrives, it is inserted
(according to the just described algorithm) into the binary tree index BTI(Cl)
such that ts(x) is in ∆T (Cl). If this BTI does not exist (i.e. x is the first arrival
in this cluster), first of all a new binary tree index BTI(Cl) containing a unique
null node (the root) is created. Then the function for inserting x into BTI(Cl) is



called and the updated BTI returned by that function is added to the existing
list of consecutive binary tree indices.

The list of BTIs with the underlying list of quad-tree windows is referred to
as Multi-Resolution Data Stream Summary - MRDS. As the sensor data stream
is infinite, the length of the list of binary tree indices is not bounded, so that
a MRDS cannot be physically stored. In the following section we propose a
compression technique which allows us to store the most relevant information
carried by the (infinite) sensor data stream by keeping a finite list of (compressed)
binary tree indices.

5 Compression of the Multi-Resolution Data Stream

Summary

Due to the bounded storage space which is available to store the information
carried by the sensor data stream, the Multi-Resolution Data Stream Summary
(which consists of a list of indexed clusters of quad-tree windows) cannot be
physically represented, as the stream is potentially infinite.

As new sensor readings arrive, the available storage space decreases till no
other reading can be stored. Indeed, we can assume that recent information is
more relevant than older one for answering user queries, which usually investigate
the recent evolution of the monitored world. Therefore, older information can
be reasonably represented with less detail than recent data. This suggests us the
following approach: as new readings arrive, if there is not enough storage space to
represent them, the needed storage space is obtained by discarding some detailed
information about “old” data.

We next describe our approach in detail. Let x be the new sensor reading
to be inserted, and let BTI(C1), BTI(C2), . . ., BTI(Ck) be the list of binary
tree indices representing all the sensor readings preceding x. This means that x
must be inserted into BTI(Ck). The insertion of x is done by performing the
following steps:
1. the storage space Space(x) needed to represent x into BTI(Ck) is computed

by evaluating how the insertion of x modifies the structure and the content of
BTI(Ck). Space(x) can be easily computed using the same visiting strategy
as the algorithm for inserting x into BTI(Ck);

2. if Space(x) is larger than the left amount Spacea of available storage space,
then the storage space Space(x)−Spacea is obtained by compressing (using
a lossy technique) the oldest binary tree indices, starting from BTI(C1)
towards BTI(Ck), till enough space is released.

3. x is inserted into BTI(Ck).
We next describe in detail how the needed storage space is released from the
list BTI(C1), BTI(C2), . . ., BTI(Ck). First, the oldest binary tree index is
compressed (using a technique that will be described later) trying to release the
needed storage space. If the released amount of storage space is not enough, then
the oldest binary tree index is removed from the list, and the same compression
step is executed on the new list BTI(C2), BTI(C3), . . ., BTI(Ck). The com-
pression process ends when enough storage space has been released from the list
of binary tree indices.



The strategy followed for compressing a single BTI (i.e. the oldest one of
the list) exploits the hierarchical structure of binary tree indices: each internal
node of a BTI contains the sum of its child nodes, and the leaf nodes contain
the sum of all the reading values contained in the referred quad-tree windows.
This means that the information stored in a node of a BTI is replicated with
a coarser “resolution” in its ancestor nodes. Therefore, if we delete two sibling
nodes from a binary tree index, we do not loose every information carried by
these nodes: the sum of their values is kept in their ancestor nodes. Analogously,
if we delete a quad-tree window QTWk, we do not loose every information about
the values of the readings belonging to the time interval [(k − 1) · T..k · T ], as
their sum is kept in a leaf node of the BTI.

As it will be described later, the compression of the oldest BTI is obtained
by either compressing the referred QTWs (using an ad hoc technique for com-
pressing quad-trees) or pruning some of the BTI nodes. This means that the
compression process modifies the structure of a BTI:
– a Compressed BTI is not, in general, a full binary tree, as it is obtained

from a full tree (i.e. the original BTI) by deleting some of its nodes;
– not every leaf node refers to two QTWs, as a leaf node of the compressed

BTI can be obtained in three ways: 1) it corresponds to a leaf node of the
original BTI; 2) it corresponds to a leaf node of the original BTI whose
referred QTWs have been deleted; 3) it corresponds to an internal node of
the original BTI whose child nodes have been deleted.

We next describe in detail the compression process of a BTI. The BTI to be
compressed is visited in order to reach the left-most node N (i.e. the oldest node)
having one of the following properties: 1) N is a leaf node of the BTI which
refers to 2 QTWs; 2) the node N has 2 child leaf nodes, and all the 2 children
do not refer to any QTW.

In the first of the two cases, an ad hoc procedure for compressing the quad-
tree windows referred by N is called. The 2 QTWs are compressed till either
the needed storage space is released, or they cannot be further compressed. If
both QTWs are no longer compressible, then they are deleted definitively. In the
second of the two cases, the children of N are deleted. The information contained
in these nodes is kept summarized in N .

In Fig. 5, several steps of the compression process on a binary tree index of
depth 4 (i.e. a BTI indexing 16 QTWs) is shown. The QTWs underlying the
BTI are represented by squares. In particular, uncompressed QTWs are white,
partially compressed are grey, whereas QTWs which cannot be further com-
pressed are crossed. At step 1, the oldest QTWs is partially compressed. At step
2, the needed storage space is released by continuing the compression of QTW1

till it cannot be further compressed. As the released storage space is not enough,
QTW2 is partially compressed. After step 3, all the QTWs referred by Q.1 are
maximally compressed, and they are removed during step 4. The compression
process ends after step 10: the BTI consists of a unique node (the root) which
will be definitively removed as further storage space is requested.

The compression of a BTI consists of removing its nodes progressively, so
that the detailed information carried by the removed nodes is kept summarized in



Fig. 5. Compressing a BTI

their ancestors. This summarized data will be exploited (as described in Section
6) to estimate the original information represented in the removed QTWs un-
derlying the BTI. The depth of a BTI (or, equivalently, the number of QTWs
in the corresponding cluster) determines the maximum degree of aggregation
which is reached in the MRDS. This parameter depends on the application con-
text. That is, the particular dynamics of the monitored world determines the
average size of the time intervals which need to be investigated in order to re-
trieve useful information. Data summarizing time intervals which are too large
w.r.t. this average size are ineffective to exploit in order to estimate relevant
information. For instance, the root of a BTI whose depth is 100 contains the
sum of the readings produced within 2100 consecutive time windows. Therefore,
the value associated to the root cannot be profitably used to estimate the sum
of the readings in a single time window effectively (unless additional information
about the particular data distribution carried by the stream is available). This
issue will be clearer as the estimation process on a compressed Multi-Resolution
Data Stream Summary will be explained (see Section 6).

5.1 Compressing Quad-Tree Windows

The strategy used for compressing binary tree indices could be adapted for com-
pressing quad-tree windows. In fact the compression strategy, designed for binary
trees, can be easily extended to operate on 4-ary trees. For instance, we could
compress a quad-tree window incrementally (i.e. as new data arrive) by search-
ing for the left-most node N having 4 child leaf nodes, and then deleting these
children.

Indeed, we refine this compression strategy in order to delay the loss of
detailed information inside a QTW. Instead of simply deleting a group of nodes,
we try to release the needed storage space by replacing their representation with
a less accurate one, obtained by using a lower numeric resolution for storing the



values of the sums. To this end, we use a compact structure (called n Level Tree

index - nLT ) for representing approximately a portion of the QTW. nLT indices
have been first proposed in [5, 6], where they are shown to be very effective for
the compression of two-dimensional data. A nLT index occupies 64 bits and
describes approximately both the structure and the content of a sub-tree with
depth at most n of the QTW. An example of nLT index (called “3 Level Tree

index” - 3LT) is shown in Fig. 6. The left-most sub-tree SQTW of the quad-tree
of this figure consists of 21 nodes, which occupy 2 · 21 + 32 · 16 = 554 bits (2 · 21
bits are used to represent their structure, whereas 32 · 16 bits to represent the
sums of all non derivable nodes). The 64 bits of the nLT index used for SQTW
are organized as follows: the first 17 bits are used to represent the second level of
SQTW , the second 44 bits for the third level, and the remainder 3 bits for some
structural information about the index. That is, the four nodes in the second
level of SQTW occupy 3·32+4·2 = 104 bits in the exact representation, whereas
they consume only 17 bits in the index. Analogously, the 16 nodes of the third
level of SQTW occupy 4 · (3 ·32+4 ·2) = 416 bits, and only 44 bits in the index.
In Fig. 6 the first 17 bits of the 3LT index are described in more detail.

Fig. 6. A 3LT index associated to a portion of a quad-tree window

Two strings of 6 bits are used for storing A.sum+B.sum and A.sum+C.sum,
respectively, and further 5 bits are used to store A.sum. These string of bits do
not represent the exact value of the corresponding sums, but they represent the
sums as fractions of the sum of the parent node. For instance, if R.sum is 100 and
A.sum = 25, B.sum = 30, the 6 bit string representing A.sum + B.sum stores
the value: LA+B = round

(

A.sum+B.sum
R.sum · (26 − 1)

)

= 35, whereas the 5 bit string

representing A.sum stores the value: LA = round
(

A.sum
A.sum+B.sum · (25 − 1)

)

=

14. An estimate of the sums of A,B,C,D can be evaluated from the stored string
of bits. For instance, an estimate of A.sum+B.sum is given by: A.sum + B.sum =
LA+B

26−1 ·R.sum = 55.6, whereas an estimate of B.sum is computed by subtracting
the estimate of A.sum (obtained by using LA) from the latter value.

The 44 bits representing the third level of SQTW are organized in a similar
way. For instance, two strings of 4 bits are used to represent E.sum + F.sum



and E.sum + G.sum, respectively, and a string of 3 bits is used for E.sum. The
other nodes at the third level are represented analogously.

We point out that saving one bit for storing the sum of A w.r.t. A + B can
be justified by considering that, on average, the value of the sum of the elements
inside A is an half of the sum corresponding to A + B, since the size of A is
an half of the size of A + B. Thus, on the average, the accuracy of representing
A + B using 6 bits is the same as the accuracy of representing A using 5 bits.

The family of nLT indices includes several types of index other than the 3LT
one. Each of these indices reflects a different quad-tree structure: 3LT describes
a balanced quad-tree with 3 levels, 4LT (4 Level Tree) an unbalanced quad-tree
with at most 4 levels, and so on. However, the detailed description of nLT indices
is beyond the aim of this paper and can be found in [6].

The same portion of a quad-tree window could be represented approximately
by any of the proposed nLT indices. In [6] a metric for choosing the most “suit-
able” nLT index to approximate a portion of a quad-tree is provided: that is,
the index which permits us to re-construct the original data distribution most
accurately. As it will be clear next, this metric is adopted in our compression
technique: the oldest “portions” of the quad-tree window are not deleted, but
they are replaced with the most suitable nLT index. The algorithm which uses
indices to compress a QTW is analogous to the algorithm for compressing a BTI
(suitably adapted to work with 4-ary trees) sketched in Section 5. That is the
QTW to be compressed is visited in order to reach the left-most node N (i.e. the
oldest node) having one of the following properties: 1) N is an internal node of
the QTW such that size(N.range) = 16; 2) the node N has 4 child leaf nodes,
and each child is either null or equipped with an index.

Once the node with one of these properties is found, it is equipped with the
most suitable nLT index, and all its descending nodes are deleted. In particular,
in case 1 (i.e. N is at the last but two level of the uncompressed QTW) N is
equipped with a 3LT index. In case 2 the following steps are performed:

1. all the children of N which are equipped with an index are “expanded”:
that is, the quad-trees represented by the indices are approximately re-
constructed;

2. the most suitable nLT index I for the quad-tree rooted in N is chosen, using
the above cited metric [6];

3. N is equipped with I and all the nodes descending from N are deleted.

6 Estimating Range Queries on a Multi-Resolution Data

Stream Summary

A sum range query Q = 〈si..sj , [tstart..tend]〉 can be computed by summing
the contributions of every QTW corresponding to a time window overlapping
[tstart..tend]. The QTWs underlying the list of BTIs are represented by means
of a linked list in time ascending order. Therefore the sub-list of QTWs giving
some contribution to the query result can be extracted by locating the first
(i.e. the oldest) and the last (i.e. the most recent) QTW involved in the query



(denoted, respectively, as QTWstart and QTWend). This can be done efficiently
by performing a binary search on the list of BTIs indexing the QTWs, and
locating the first and the last BTI involved in the query. Then, QTWstart and
QTWend are identified by visiting BTIstart and BTIend. The answer to the query
consists of the sum of the contributions of every QTW between QTWstart and
QTWend. The evaluation of each of these contributions is explained in detail in
the next section.

Indeed, as the Sensor Data Stream Summary is progressively compressed, it
can happen that QTWstart has been removed, and the information it contained
is only represented in the overlying BTI with less detail. Therefore, the query
can be evaluated as follows:

1. the contribution of all the removed QTWs is estimated by accessing the
content of the nodes of the BTIs where these QTWs are summarized;

2. the contribution of the QTWs which have not been removed is evaluated
after locating the oldest QTW involved in the query which is still stored.
This QTW will be denoted as QTW ′

start.

Indeed, it can happen that QTWend has been removed either. This means that all
the QTWs involved in the query have been removed by the compression process
to release some space, as the QTWs are removed in time ascending order. In
this case, the query is evaluated by estimating the contribution of each involved
QTW by accessing only the nodes of the overlying BTIs.

For instance, consider the MRDS consisting of two BTIs shown in Fig. 7. The
QTWs whose perimeter is dashed (i.e. QTW1, QTW2, . . . , QTW8) have been re-
moved by the compression process. The query represented with a grey box is eval-
uated by summing the contributions of the BTI1 nodes N1.1 and N1.2 with the
contribution of each QTW belonging to the sequence QTW9, QTW10, . . . , QTW29.

Fig. 7. A range query on a MRDS

The contribution of the BTI leaf nodes to the query estimate is evaluated by
performing linear interpolation. This is a simple estimation technique which is
widely used on summarized data, such as histograms, in the context of selectivity
estimation [10], and compressed datacubes, in the context of OLAP applications
[9, 11]. The use of linear interpolation on a leaf node N of a BTI is based on
the assumption that data are uniformly distributed inside the two-dimensional
range N.range (CVA - Continuous Value Assumption). If we denote the two



dimensional range corresponding to the intersection between N.range and the
range of the query Q as N ∩Q, and the size of the whole two dimensional range
delimited by the node N as size(N), the contribution of N to the query estimate

is given by: size(N∩Q)
size(N) · N.sum.

6.1 Estimating a sum range query inside a QTW

The contribution of a QTW to a query Q is evaluated as follows. The quad-tree
underlying the QTW is visited starting from its root (which corresponds to the
whole time window). When a node N is being visited, three cases may occur:

1. the range corresponding to the node is external to the range of Q: the node
gives no contribution to the estimate;

2. the range corresponding to the node is entirely contained into the range of

Q: the contribution of the node is given by the value of its sum;
3. the range corresponding to the node partially overlaps the range of Q: if N is

a leaf and is not equipped with any index, linear interpolation is performed
for evaluating which portion of the sum associated to the node lies onto
the range of the query. If N has an index, the index is “expanded” (i.e. an
approximate quad-tree rooted in N is re-constructed using the information
contained in the index). Then the new quad-tree is visited with the same
strategy as the QTW to evaluate the contribution of its nodes (see [6] for
more details). Finally, if the node N is internal, the contribution of the
node is the sum of the contributions of its children, which are recursively
evaluated.

The pre-aggregations stored in the nodes of quad-tree windows make the es-
timation inside a QTW very efficient. In fact, if a QTW node whose range is
completely contained in the query range is visited during the estimation process,
its sum contributes to the query result exactly, so that none of its descending
nodes must be visited. This means that, generally, not all the leaf nodes in-
volved in the query need to be accessed when evaluating the query estimate.
The overall estimation process turns out to be efficient thanks to the hierarchi-
cal organization of data in the QTWs, as well as the use of the overlying BTIs
which permits us to locate the quad-tree windows efficiently. We point out that
the BTIs involved in the query can be located efficiently too, i.e. by performing
a binary search on the ordered list of BTIs stored in the MRDS. The cost of
this operation is logarithmic with respect to the list length, which is, in turn,
proportional to the number of readings represented in the MRDS.

6.2 Answering Continuous (Range) Queries

The range query evaluation paradigm on the data summary can be easily ex-
tended to deal with continuous range queries. A continuous query is a triplet
Q = 〈si..sj ,∆Tstart,∆Tend〉 (where ∆Tstart > ∆Tend) whose answer, at the
current time t, is the evaluation of an aggregate operator (such as sum, count,
avg, etc.) on the values produced by the sources si, si+1, . . . , sj within the time
interval [t − ∆Tstart..t − ∆Tend]. In other words, a continuous query can be
viewed as range query whose time interval “moves” continuously, as time goes



on. The output of a continuous query is a stream of (simple) range query an-
swers which are evaluated with a given frequency. That is, the answer to a
continuous query Q = 〈si..sj ,∆Tstart,∆Tend〉 issued at time t0 with frequency
∆t is the stream consisting of the answers of the queries Q0 = 〈si..sj , t0 −
∆Tstart, t0 − ∆Tend〉, Q1 = 〈si..sj , t0 − ∆Tstart + ∆t, t0 − ∆Tend + ∆t〉, Q2 =
〈si..sj , t0−∆Tstart +2 ·∆t, t0 −∆Tend +2 ·∆t〉, . . .. The i-th term of this stream
can be evaluated efficiently if we exploit the knowledge of the (i− 1)-th value of
the stream, provided that ∆t ≪ ∆Tstart −∆Tend. In this case the ranges of two
consecutive queries Qi−1 and Qi are overlapping, and Qi can be evaluated by
answering two range queries whose size is much less than the size of Qi. These
two range queries are Q′ = 〈si..sj , t0−∆Tstart +(i−1) ·∆t, t0−∆Tstart + i ·∆t〉,
and Q′′ = 〈si..sj , t0 − ∆Tend + (i − 1) · ∆t, t0 − ∆Tend + i · ∆t〉. Thus we have:
Qi = Qi−1 − Q′ + Q′′.

Acknowledgements. The authors would like to thank Domenico Saccà for his
several comments and suggestions.

References

1. R. Avnur and J. M. Hellerstein. Eddies: Continuously adaptive query processing.
In ACM SIGMOD Conference, 2000.

2. M. Datar R. Motwani B. Babcock, S. Babu and J. Widom. Models and Issues in
Data Stream Systems. In Twenty-first ACM SIGACT-SIGMOD-SIGART Sympo-
sium on Principles of Database Systems, 2002.

3. D. Pregibon A. Rogers F. Smith C. Cortes, K. Fisher. Hancock: A language for
extracting signatures from data streams. In Knowledge Discovery in Databases
(KDD2000), 2000.

4. V.J. Tsotras D. Zhang, D. Gunopulos and B. Seeger. Temporal aggregation over
data streams using multiple granularities. In Extending Database Technology Con-
ference, 2002.

5. D. Rosaci D. Sacca’ F. Buccafurri, L. Pontieri. Improving range query estimation
on histograms. 2002.

6. D. Sacca’ C. Sirangelo F. Buccafurri, F. Furfaro. A quad-tree based multiresolution
approach for two-dimensional summary data. 2003.

7. S. Rajagopalan M.R. Henzinger, P. Raghavan. Computing on data streams.
Technical Report 1998-011, Digital Systems Research Center, 1998. Available at
http://www.research.digital.com/SRC/.

8. M.J. Franklin S. Madden. Fjording the stream: An architecture for queries over
streaming sensor data. In Proc. ICDE, 2002.

9. V. Ganti V. Poosala. Fast approximate answers to aggregate queries on a datacube.
In Proc. SSDBM Conf. 1999, Cleaveland, Ohio, USA.

10. Y. E. Ioannidis V. Poosala. Selectivity estimation without the attribute value
independence assumption.

11. Y.E. Ioannidis V. Poosala, V. Ganti. Approximate query answering using his-
tograms.


