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Abstract. Labelled Markov processes are continuous-state fully proba-
bilistic labelled transition systems. They can be seen as co-algebras of a
suitable monad on the category of measurable space. The theory as devel-
oped so far included a treatment of bisimulation, logical characterization
of bisimulation, weak bisimulation, metrics, universal domains for LMPs
and approximations. Much of the theory involved delicate properties of
analytic spaces.

Recently a new kind of averaging procedure was used to construct ap-
proximations. Remarkably, this version of the theory uses a dual view of
LMPs and greatly simplifies the theory eliminating the need to consider
aanlytic spaces. In this talk I will survey some of the ideas that led to
this work.

1 Introduction

The study of continuous systems is becoming a more common part of computer
science. Control theory, or systems theory has worked with an abstract notion
of a system; see, for example, the text by Sontag [1]. These notions were general
enough to include the continuous physical systems normally studied by control
engineers as well as systems such as automata which were inherently discrete in
nature. General concepts such as “state”, “transformation” and “observation”
are used in both the discrete and the continuous settings. Labelled Markov pro-
cesses (LMPs) [2,3] were invented as a formalism to study interacting probabilistic
systems that may be either discrete or continuous.

The basic idea of LMPs is to consider probabilistic labelled transition systems
with continuous state spaces. There are states and actions or labels. A state and
an action determines a probability distribution over the next states. There is no
other nondeterminism as seen, for example, in probabilistic automata[4]. Nor is
there any attempt to assign probabilities to the actions; the nondeterminism is
captured by the arbitrariness in the choice of actions. This model is very close
to the notion of Markov decision process (MDP) [5] used in optimization theory
and machine learning. The only difference is that we do not have a concept of
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“reward” or “payoff.” The discrete version of this model is due to Larsen and
Skou [6] and is called by them the reactive model.

The systems that we consider - continuous state space and discrete time - are
of interest for two reasons. First, this is a reasonable middle ground before we
get to a completely continuous model. Several authors have looked at discrete
space, continuous time models. It is clear that fully continuous models will force
us to make a significant deepening of the mathematics. One will have to consider
stochastic differential equations rather than transition systems to describe the
evolution of systems: we are not there yet.

Second, these systems occur in natural examples. In the past one of us was
involved with a case study from avionics where the discrete-time-continuous-
space character of the system was clearly in evidence. Many control systems have
this character. It is possible that this may even be fruitful for biology.

Very similar notions were introduced at around the same time by de Vink and
Rutten[7]. The main difference is that they worked with ultrametric spaces; one
can argue that these spaces are essentially discrete. For example, they are totally
disconnected and are nothing like the spaces that arise in physical systems. Their
important contribution was to emphasize the co-algebraic point of view – noted
in passing in [3] – and show that bisimulation could be presented as a span of co-
algebra homomorphisms. The same idea, span of “zigzags”, is used by Desharnais
et al. [3]. In the present work we emphasize the importance of co-spans rather
than spans.

The notion of bisimulation is central to the study of concurrent systems.
While there is a variety of different equivalence relations between processes
(two-way simulation, trace equivalence, failures equivalence and many more),
bisimulation enjoys some fundamental mathematical properties, most notably
its characterization as a fixed-point, which make it the most discussed process
equivalence.

One might take the view that any automated analysis or logical reasoning must
be inherently discrete in character. In particular, even if one is interested in rea-
soning about a physical system, one has to first discretize the system. In fact, this
point of view actually provides a good argument for retaining the continuous view
of the system. A given system may well be described in continuous terms. Without
formalizing the continuous system - and having a notion of equivalence between
discrete and continuous systems - how does one argue that the discretized system
is a faithful model of the underlying continuous system? Even suppose one is will-
ing to treat a discrete model as given, what if one needs to refine the model? For
example, a given discretization may arise from some type of approximation based
on a given tolerance; how does one refine the tolerance or discretize adaptively?
Clearly the underlying continuous model has to be retained and used if we want
to construct different discrete approximations.

In brief, a labelled Markov process can be described as follows. There is a set of
states and a set of labels. The system is in a state at a point in time and moves
between states. The state which it moves to is governed by which interaction
with the environment is taking place and this is indicated by the labels. The
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system evolves according to a probabilistic law. If the system interacts with the
environment by synchronizing on a label it makes a transition to a new state
governed by a transition probability distribution. So far, this is essentially the
model developed by Larsen and Skou [6]. They specify the transitions by giving,
for each label, a probability for going from one state to another. Bisimulation
then amounts to matching the moves; this means that both the labels and the
probabilities must be the same.

In the case of a continuous state space, however, one cannot simply specify tran-
sition probabilities from one state to another. In most interesting systems all such
transitionprobabilitieswouldbe zero! Instead onemustworkwith probability den-
sities. In so doing, one has to confront the major issues that arose when probability
theory was first formalized, such as the existence of subsets for which the notion
of probability does not make sense. In the present case, we have to introduce a
notion of set for which “probabilities make sense” (i.e. a σ-field) and instead of
talking about probabilities of going from a state s to another state s′, we have to
talk about going from a state s to a set of states A.

The notion of bisimulation for these systems is a mild modification of the
definition of Larsen and Skou. One has to add a measure theoretic condition. In
the logical characterization it was shown that two states are bisimilar if and only
if they satisfy all the same formulas of a modal logic similar to Hennessy-Milner
logic. The striking aspect of this result is that the logic is completely negation
free. Even for purely discrete systems this result was new and quite unexpected.
It shows that fully probabilistic systems are very close to determinate systems.
The nature of the proof is quite different from proofs of other Hennessy-Milner
type results.

In recent work we take an entirely new approach, in some ways “dual” to the
normal view of probabilistic transition systems. We think of a Markov process
as a transformer of functions defined on it rather than as a transformer of the
state. Thus, instead of working directly with a Markov kernel τ(s, A) that takes
a state s to a probability distribution over the state space, we think of a Markov
process as transforming a function f into a new function

∫
f(s′)τ(s, ds′) over the

state space. This is the probabilistic analogue of working with predicate trans-
formers, a point of view advocated by Kozen [8] in a path-breaking early paper
on probabilistic systems and logic.

This new way of looking at things leads to three new results:

1. It is possible to define bisimulation on general spaces – not just on analytic
spaces – and show that it is an equivalence relation with easy categorical
constructions. The logical characterization of bisimulation can also be done
generally, and with no complicated measure theoretic arguments.

2. A new and flexible approach to approximation based on averaging can be
given. This vastly generalizes and streamlines the idea of using conditional
expectations to compute approximation [9].

3. It is possible to show that there is a minimal bisimulation equivalent to a
process obtained as the limit of finite approximants.
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2 Labelled Markov Processes

Labelled Markov processes are probabilistic versions of labelled transition sys-
tems. Corresponding to each label a Markov process is defined. The transition
probability is given by a stochastic kernel (Feller’s terminology [10]) also com-
monly called a Markov kernel. Thus the indeterminacy has two sources: the
“choice” made by the environment - no probabilities are attributed to this at all
- and the probabilistic transitions made by the process. This is the “reactive”
model of Larsen and Skou [6] who used it in a discrete state-space setting.

A key ingredient in the theory is the stochastic kernel or Markov kernel. We
will call it a transition probability function.

Definition 1. A transition (sub-)probability function on a measurable space
(S, Σ) is a function τ : S × Σ −→ [0, 1] such that for each fixed s ∈ S, the set
function τ(s, ·) is a (sub-)probability measure, and for each fixed X ∈ Σ the
function τ(·, X) is a measurable function.

One interprets τ(s, X) as the probability of the process starting in state s making
a transition into one of the states in X . The transition probability is really a
conditional probability; it gives the probability of the process being in one of
the states of the set X after the transition, given that it was in the state s
before the transition. In general the transition probabilities could depend on
time, in the sense that the transition probability could be different at every step,
but still independent of past history; we always consider the time-independent
case.

We will work with sub-probability functions; i.e. with functions where τ(s, S) ≤
1 rather than τ(s, S) = 1. The mathematical results go through in this extended
case. We view processes where the transition functions are only sub-probabilities
as being partially defined, opening the way for a notion of approximation.

The stochastic systems studied in the literature are usually only the very
special version where τ(s, S) is either 1 or 0. We call such processes total and
the general processes are called partial. We capture the idea that an action is
rejected by setting τ(s, S) to be 0.

Definition 2. A labelled Markov process (LMP) S with label set A is a
structure (S, i, Σ, {τa | a ∈ A}), where S is the set of states, i is the initial state,
and Σ is the Borel σ-field on S, and

∀a ∈ A, τa : S × Σ −→ [0, 1]

is a transition sub-probability function.

We will fix the label set to be A once and for all. We will write (S, i, Σ, τ)
for labelled Markov processes, instead of the more precise (S, i, Σ, {τa | a ∈
A}).

We give a simple example to illustrate the ideas.

Example 1. (From [11]) Consider a process with two labels {a, b}. The state
space is upper right quadrant of the real plane, R

2 together with a single extra
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point. In order to describe this system conveniently we will pretend, at first,
that the state space is the entire real plane. When the process makes an a-move
from state (x0, y0), it jumps to (x, y0), where the probability distribution for x
is given by the density Kα exp(−α(x − x0)2), where Kα =

√
α/π is the nor-

malizing factor. When it makes a b-move it jumps from state (x0, y0) to (x0, y),
where the distribution of y is given by the density function Kβ exp(−β(y−y0)2).
The meaning of these densities is as follows. The probability of jumping from
(x0, y0) to a state with x-coordinate in the interval [s, t] under an a-move is∫ t

s
Kα exp(−α(x − x0)2)dx. All points with x < 0 or y < 0 are identified as a

single absorbing state. Once it is in this state no more transitions are possible.
Note that the probability of jumping to any given point is, of course, 0. In this
process the interaction with the environment controls whether the jump is along
the x-axis or along the y-axis but the actual extent of the jump is governed by a
probability distribution. If there were just a single label we would have an ordi-
nary (time-independent) Markov process; in fact it would be a brownian motion
with absorbing walls.

3 Bisimulation and Logic

The fundamental process equivalence that we consider is strong probabilistic
bisimulation. Probabilistic bisimulation means matching the moves and proba-
bilities exactly – thus each system must be able to make the same transitions with
the same probabilities as the other. Larsen and Skou define a bisimulation rela-
tion R as an equivalence relation on the states satisfying the condition that, for
each label a, equivalent states have equal probability of making an a-transition
to any R-equivalence class of states. In the continuous case, we demand that
equivalent states have equal probability of making an a-transition to any union
of equivalence classes of states provided that the union is measurable.

Instead of talking about sets of equivalence classes we will instead use the
notion of R-closed sets. Let R be a binary relation on a set S. We say a set
X ⊆ S is R-closed if R(X) := {t|∃s ∈ X, sRt} is a subset of X . If R is reflexive,
this becomes R(X) = X . If R is an equivalence relation, a set is R-closed if and
only if it is a union of equivalence classes.

Definition 3. Let S = (S, i, Σ, τ) be a labelled Markov process. An equivalence
relation R on S is a bisimulation if whenever sRs′, with s, s′ ∈ S, we have that
for all a ∈ A and every R-closed measurable set X ∈ Σ, τa(s, X) = τa(s′, X).
Two states are bisimilar if they are related by a bisimulation relation.

Alternately, bisimulation on the states of a labelled Markov process can be
viewed as the maximum fixed point of the following (monotone) functional F on
the lattice of equivalence relations on (S × S,⊆):

s F (R) t if for all a ∈ A, and all R-closed C ∈ Σ, τa(s, C) ≤ τa(t, C).

It is easy to prove that bisimulation is an equivalence relation.
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The intuition of this definition is that the relation R relates those states that
can be “lumped” together. Bisimulation is the largest such relation. In fact the
notion of bisimulation was known in the queuing theory community [12] under
the name of “lumpability”.

One can define a simple modal logic and prove that two states are bisimilar
if and only if they satisfy exactly the same formulas. As before we assume that
there is a fixed set of “actions” A. The logic is called L and has the following
syntax:

T | φ1 ∧ φ2 | 〈a〉qφ
where a is an action and q is a rational number. This is the basic logic with
which we establish the logical characterization.

Given a labelled Markov process S = (S, i, Σ, τ) we write s |= φ to mean that
the state s satisfies the formula φ. The definition of the relation |= is given by
induction on formulas. The definition is obvious for the propositional constant
T and conjunction. We say s |= 〈a〉qφ if and only if ∃X ∈ Σ.(∀s′ ∈ X.s′ |=
φ)∧(τa(s, X) > q). In other words, the process in state s can make an a-move to
a state, that satisfies φ, with probability strictly greater than q. We write �φ�S
for the set {s ∈ S | s |= φ}, and S |= φ if i |= φ. We often omit the subscript
when no confusion can arise.

The logic that Larsen and Skou used in [6] has more constructs including
disjunction and some negative constructs. They show that for systems satisfying
a “minimum deviation condition” – a uniform bound on the degree of branching
everywhere – two states of the same process are bisimilar if and only if they
satisfy the same formulas of their logic.

The main theorem relating L and bisimulation is the following:

Theorem 4. Let (S, i, Σ, τ) be a labelled Markov process. Two states s, s′ ∈ S
are bisimilar if and only if they satisfy the same formulas of L.

It does not have any kind of minimal deviation condition, nor any negative
constructs in the logic. In [13] a logical characterization of simulation was also
proved.

4 Approximation by Unfolding

In this section I review the “old” view of approximation. The key idea is the
construction of some approximants via an “unfolding” construction. As the ap-
proximation is refined there are more and more transitions possible. There are
two parameters to the approximation, one is a natural number n, and the other
is a positive rational ε. The number n gives the number of successive transi-
tions possible from the start state. The number ε measures the accuracy with
which the probabilities approximate the transition probabilities of the original
process.

Given a labelled Markov process S = (S, i, Σ, τ), an integer n and a rational
number ε > 0, we define S(n, ε) to be an n-step unfolding approximation of S.



Approximating Labelled Markov Processes Again! 151

Its state-space is divided into n+1 levels which are numbered 0, 1, . . . , n. Bisim-
ulation is a fixed point and that one has - for each n - a level n approximation
to bisimulation. At each level, say n, the states of the approximant is a partition
of S; these partitions correspond to the equivalence classes corresponding to the
level n approximation to bisimulation. The initial state of S(n, ε) is at level n
and transitions only occur between a state of one level to a state of one lower
level. Thus, in particular, states of level 0 have no outgoing transitions. In the
following we omit the curly brackets around singletons.

Let (S, i, Σ, τ) be a labelled Markov process, n ∈ N and ε a positive rational.
We denote the finite-state approximation by S(n, ε) = (P, p0, ρ) where P is a
subset of Σ × {0, . . . , n}. It is defined as follows, for n ∈ N and ε > 0. S(n, ε)
has n + 1 levels. States are defined by induction on their level. Level 0 has one
state (S, 0). Now, given the sets from level l, we define states of level l + 1 as
follows. Suppose that there are m states at level l, we partition the interval
[0, 1] into intervals of size ε/m. Let (Bj)j∈I stand for this partition; i.e. for
{{0}, (0, ε/m], (ε/m, 2ε/m], . . .}. States of level l+1 are obtained by the partition
of S that is generated by the sets τa(·, C)−1(Bj), for every set C corresponding
to state at level l and every label a ∈ {a1, . . . , an}, i ∈ I. Thus, if a set X is in
this partition of S, (X, l+1) is a state of level l+1. Transitions can happen from
a state of level l + 1 to a state of level l, and the transition probability function
is given by

ρa((X, k), (B, l)) =

{
inf
t∈X

τa(t, B)
)

if k = l + 1,

0 otherwise.

The initial state p0 of S(n, ε) is the unique state (X, n) such that X contains i,
the initial state of S.

The next theorem is the main result.

Theorem 5. If a state s ∈ S satisfies a formula φ ∈ L∨, then there is some
approximation S(n, ε) such that (Xs, n) |= φ.

In the original approximation paper [13], a universal domain of LMPs was defined
and a simulation order was given. It was shown that the approximants form a
directed set and that any LMP could be given as a sup of the approximants. The
approximants gave a countable base for the domain which was thus a continuous
domain. It is a final co-algebra for a suitable category of LMPs. Independently,
van Breugel and Worrell showed that one could define a final co-algebra for
LMPs using other techniques.

In a later paper, Desharnais et al. [14] developed a metric and showed that the
approximations converge in that metric. Thus this seems to strangthen the idea
that this is a robust notion of convergence. The trouble is that the approximants
are from below. In other words, if we cluster some of the states to form an
approximate state say B, to estimate the transition probability from B to A we
take the inf of τ(x, A) as x ranges over B. It is far more natural to average the
states in B. This idea was developed in [9]. The construction that we develop
next absorbs this idea but in a completely new way.
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5 The Dual View

Definition 6. An abstract Markov process (AMP) on a probability space X is
a ω-continuous linear map τ : L+

∞(X) −→ L+
∞(X) with τ(1X) ≤p 1X .

The condition that τ(1X) ≤p 1X is equivalent to requiring that the operator
norm of τ be less than one, i.e. that ‖τ(f)‖∞ ≤ ‖f‖∞ for all f ∈ L+∞(X). This
is natural, as the function τ(1X), evaluated at a point x, is the probability of
jumping from x to X , which is less than one. AMPs are often called Markov
operators in the literature, and have been first introduced in [15].

We now formalize the notion of conditional expectation. We work in a subcate-
gory of Prb, called Rad∞, where we require the image measure to be bounded by
a multiple of the measure in the codomain; that is, measurable maps α : (X, Σ, p)
−→ (Y, Λ, q) such that Mα(p) ≤ Kq for some real number K.

Let us define an operator Eα : L+∞(X, p) −→ L+∞(Y, q), as follows: Eα(f) =
dMα(f�p)

dq . As α is in Rad∞, the Radon-Nikodym derivative is defined and is in
L+∞(X, p). That is, the following diagram commutes by definition:

L+
∞(X, p)

�p
� M≤Kp(X)

L+
∞(Y, q)

Eα
�

�
d
dq M≤Kq(Y )

Mα(−)
�

Note that if (X, Σ, p) is a probability space and Λ ⊆ Σ is a sub-σ-algebra,
then we have the obvious map λ : (X, Σ, p) −→ (X, Λ, p) which is the identity
on the underlying set X . This map is in Rad∞ and it is easy to see that Eλ

is precisely the conditional expectation onto Λ. Thus the operator E− truly
generalizes conditional expectation. It is easy to show that Eα◦β = Eα ◦Eβ and
thus E− is functorial.

Given an AMP on (X, p) and a map α : (X, p) −→ (Y, q) in Rad∞, we thus
have the following approximation scheme:

L+
∞(Y, q) ..........

α(τ)
� L+

∞(Y, q)

L+
∞(X, p)

(−) ◦ α
�

τ� L+
∞(X, p)

Eα
�

Note that ‖α(τ)‖ ≤ ‖(−) ◦ α‖ · ‖τ‖ · ‖Eα‖ = ‖τ‖ · ‖d(α)‖∞. Here the norm of
(·) ◦α is 1. As an AMP has a norm less than 1, we can only be sure that a map
α yields an approximation for every AMP on X if ‖d(α)‖∞ ≤ 1. We call the
AMP α(τ) the projection of τ on Y .

6 Bisimulation

The notion of probabilistic bisimulation was introduced by Larsen and Skou [6]
for discrete spaces and by Desharnais et al. [3] for continuous spaces.
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Subsequently a dual notion called event bisimulation or probabilistic co-congruence
was defined independently by Danos et al. [16] and by Bartels et al. [17]. The
idea of event bisimulation was that one should focus on the measurable sets
rather than on the points. This meshes exactly with the view here.

Definition 7. Given a (usual) Markov process (X, Σ, τ), an event-bisimulation
is a sub-σ-algebra Λ of Σ such that (X, Λ, τ) is still a Markov process [16].

The only additional condition that needs to be respected for this to be true is
that the Markov process τ(x, A) is Λ-measurable for a fixed A ∈ Λ. Translating
this definition in terms of AMPs, this implies that the AMP τ sends the subspace
L+∞(X, Λ, p) to itself, and so that the following commutes:

L+
∞(X, Σ)

τ
� L+

∞(X, Σ)

L+
∞(X, Λ)

∪

�

τ
� L+

∞(X, Λ)
∪

�

A generalization to the above would be a Rad∞ map α from (X, Σ, p) to
(Y, Λ, q), respectively equipped with AMPs τ and ρ, such that the following
commutes:

L+
∞(X, p)

τ
� L+

∞(X, p)

L+
∞(Y, q)

(−) ◦ α
�

ρ
� L+

∞(Y, q)

(−) ◦ α
�

We will call such a map a zigzag.

Definition 8. We say that two objects of AMP, (X, Σ, p, τ) and (Y, Λ, q, ρ),
are bisimilar if there is a third object (Z, Γ, r, π) with a pair of zigzags

α : (X, Σ, p, τ) −→ (Z, Γ, r, π)
β : (Y, Λ, q, ρ) −→ (Z, Γ, r, π)

making a cospan diagram

(X, Σ, p, τ) (Y, Λ, q, ρ)

(Z, Γ, r, π)

β

�

α
�

Note that the identity function on an AMP is a zigzag, and thus that any zigzag
between two AMPs X and Y implies that they are bisimilar.

The great advantage of cospans is that one needs pushouts to exist rather
than pullbacks (or weak pullbacks); pushouts are much easier to construct. The
following theorem shows that bisimulation is an equivalence.
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Theorem 9. Let α : X −→ Y and β : X −→ Z be a span of zigzags. Then the
pushout W exists and the pushout maps δ : Y −→ W and γ : Z −→ W are zigzags.

Corollary 10. Bisimulation is an equivalence relation on the objects of AMP.

It turns out that there is a “smallest” bisimulation. Given an AMP (X, Σ, p, τ),
one question one may ask is whether there is a “smallest” object (X̃, Ξ, r, ξ) in
AMP such that, for every zigzag from X to another AMP (Y, Λ, q, ρ), there is
a zigzag from (Y, Λ, q, ρ) to (X̃, Ξ, r, ξ). It can be shown that such an object
exists.

Proposition 11. Let {αi : (X, Σ, p, τ) −→ (Yi, Λi, qi, ρi)} be the set of all zigzags
in AMP with domain (X, Σ, p, τ). This yields a generalized pushout diagram,
and as in Theorem 9, the pushout (X̃, Ξ, r, ξ) exists and the pushout maps are
zigzags.

A version of the logical characterization theorem follows immediately from this.

7 Approximation Revisited

In this section, we let the measurable map iΛ : (X, Σ) −→ (X, Λ) be the identity
on the set X , restricting the σ-field. The resulting AMP morphism is denoted
as iΛ : (X, Σ, p, τ) −→ (X, Λ, p, Λ(τ)), as p is just restricted on a smaller σ-field,
with Λ(τ) being the projection of τ on the smaller σ-field Λ.

Let (X, Σ, p, τa) be a labelled AMP. Let P be a finite set of rationals in [0, 1];
we will call it a rational partition. We define a family of finite π-systems [18],
subsets of Σ, as follows:

ΦP,0 = {X, ∅}
ΦP,n = π

({
τa(1A)−1(qi, 1] : qi ∈ P , A ∈ ΦP,n−1, a ∈ A} ∪ ΦP,n−1

)

where π(Ω) is the π-system generated by the class of sets Ω.
For each pair (P , M) consisting of a rational partition and a natural number,

we define a σ-algebra ΛP,M on X as ΛP,M = σ (ΦP,M ), the σ-algebra generated
by ΦP,M . We shall call each pair (P , M) consisting of a rational partition and a
natural number an approximation pair. These σ-algebras have a very important
property:

Proposition 12. Given any labelled AMP (X, Σ, p, τa), the σ-field σ (
⋃

ΛP,M ),
where the union is taken over all approximation pairs, is precisely the σ-field
σ �L� obtained from the logic.

In fact one can use a theorem of Choksi’s from 1958 [19] to construct projective
limits of finite approximants and establish the following fundamental theorem.

Theorem 13. Given a labelled AMP (X, Σ, p, τa), the projective limit of its fi-
nite approximants (proj lim X̂, Γ, γ, ζa) is isomorphic to its smallest bisimulation
(X̃, Ξ, r, ξa).
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8 Conclusions

The main contribution of the present work is to show how one can obtain a
powerful and general notion of approximation of Markov processes using the
dualized view of Markov processes as transformers of random variables (mea-
surable functions). We view Markov processes as “predicate transformers”. Our
main result is to show that this way of working with Markov processes greatly
simplifies the theory: bisimulation, logical characterization and approximation.
Working with the functions (properties) one is less troubled by having to deal
with things that are defined only “almost everywhere” as happens when one
works with states.

A very nice feature of the theory is the ability to show that a minimal bisimula-
tion exists. Furthermore, this minimal object can be constructed as the projective
limit of finite approximants.
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