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Example program

// Doubly-Linked Lists

typedef struct {

DLL *next, *prev;

} DLL;

DLL *DLL_reverse(DLL *x) {

DLL *y,*z;

z = NULL;

y = x->next;

while (y!=NULL) {

x->next = z;

x->prev = y;

z = x; x = y;

y = x->next

}

return x;

}
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Properties

• The usual properties of use of memory (absence of intrinsic errors)

• Shape invariants

– Using shape testers like
x = aDLLHead;

while (x != NULL && random())

x = x->next;

if (x != NULL && x->next->prev != x)

error();

– Using formulæ of a logic like

l
next
→

∗

[∃x. p
next
→ x ∧ x 6= ⊥ ∧ ¬(x

prev
→ p)]

which can be translated into shape testers
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Verification approach

• Properties are translated to control line unreachability

• Verification using an automata-based framework

– Encode memory configurations (shape graphs) as trees
– Use finite-state tree automata to represent sets of configurations
– Encode program statements as tree transducers (I/O automata)
– Use Abstract Tree Regular Model Checking [BHRV ’05]
∗ Symbolic reachability analysis
∗ Refinable abstractions on automata

• Implemented using Mona and applied to several case studies
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Overview

• Properties considered

• Automata based verification approach

– Encoding of sets of memory configurations
– Encoding of program statements as transducers

• Experiments
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Properties considered

• Basic consistency of pointer manipulations

– absence of null and undefined pointer dereferences
– no references to deleted nodes

• Shape invariance properties

– like absence of sharing, acyclicity
– if x->next == y in a DLL then also y->prev == x

• Absence of garbage
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Specifying shape invariance properties

We describe negations of these properties

• Shape testers

• A logic of bad memory patterns

– translated into shape testers
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Shape testers

• Instrumentation code written in extended C

– following pointers backwards
– non-deterministic branching

• Added to the program

Checking consistency of the next and previous pointers

x = aDLLHead;

while (x != NULL && random())

x = x->next;

if (x != NULL && x->next->prev != x)

error();
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A logic of bad memory patterns (LBMP)

• allows to describe bad shapes

• V finite set of program variables

• S finite set of selectors

• Φ ::= ∃w1, ...wn.ϕ with W = {w1, ..., wn} set of formulae variables

• ϕ ::= ϕ ∨ ϕ | ψ, ψ ::= ψ ∧ ψ | x̺y | x̺
x, y ∈ V ∪W and ̺ is a reachability formula

• ̺ ::=
s
→|

s
←| ̺+̺ | ̺.̺ | ̺∗ | [σ] where s ∈ S and σ a local neighbourhood formula

• LNF: ∃u1, ..., um.BC(x
s
→ y, x = y) with U = {u1, ..., um} a set of local formula

variables, s ∈ S, x ∈ V ∪W ∪ U ∪ {p}, y ∈ V ∪W ∪ U ∪ {p,⊥,⊤},
p denotes the current position in the shape graph, ⊥ is NULL and ⊤ undefined.
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Examples for doubly linked lists

• l
next
→

∗

[p = ⊤]
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Examples for doubly linked lists

• l
next
→

∗

[p = ⊤]
The list ends with undefined
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Examples for doubly linked lists

• l
next
→

∗

[p = ⊤]
The list ends with undefined

• l[¬(p
prev
→ ⊥)]
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Examples for doubly linked lists

• l
next
→

∗

[p = ⊤]
The list ends with undefined

• l[¬(p
prev
→ ⊥)]

the predecessor of the first element is not null
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Examples for doubly linked lists

• l
next
→

∗

[p = ⊤]
The list ends with undefined

• l[¬(p
prev
→ ⊥)]

the predecessor of the first element is not null

• l
next
→

∗

[∃x. p
next
→ x ∧ x 6= ⊥ ∧ ¬(x

prev
→ p)]
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Examples for doubly linked lists

• l
next
→

∗

[p = ⊤]
The list ends with undefined

• l[¬(p
prev
→ ⊥)]

the predecessor of the first element is not null

• l
next
→

∗

[∃x. p
next
→ x ∧ x 6= ⊥ ∧ ¬(x

prev
→ p)]

the predecessor of the successor of a node is not the node itself
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Examples for doubly linked lists

• l
next
→

∗

[p = ⊤]
The list ends with undefined

• l[¬(p
prev
→ ⊥)]

the predecessor of the first element is not null

• l
next
→

∗

[∃x. p
next
→ x ∧ x 6= ⊥ ∧ ¬(x

prev
→ p)]

the predecessor of the successor of a node is not the node itself

• ∃x. l
next
→

∗

[p = x]
next
→

next
→

∗

[p = x]
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Examples for doubly linked lists

• l
next
→

∗

[p = ⊤]
The list ends with undefined

• l[¬(p
prev
→ ⊥)]

the predecessor of the first element is not null

• l
next
→

∗

[∃x. p
next
→ x ∧ x 6= ⊥ ∧ ¬(x

prev
→ p)]

the predecessor of the successor of a node is not the node itself

• ∃x. l
next
→

∗

[p = x]
next
→

next
→

∗

[p = x]
the list is cyclic
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Translation from LBMP to shape testers

• Suppose that all variables refered to in formula are reachable from V

• One starts by exploring the memory configurations starting from the variables

• go to special location if formula holds

• Disjunction : non-deterministic branching

• Conjunction : series of tests

• Reachability formulae ̺ ::=
s
→|

s
←| ̺+ ̺ | ̺.̺ | ̺∗ | [σ]

–
s
→|

s
← : following the appropriate selectors (forward or backward)

– ̺.̺ : sequencing
– ̺+ ̺ and ̺∗ : non deterministic branching

• [σ] can also be tested easily
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The verification problem

• If a basic consistency error is encountered, the program goes to some designated
error location.

• Negations of shape invariance properties are expressed as formulæ of LBMP.

• They are translated into shape testers.

• If an error location is reached, the shape invariance property is broken.

Verification amounts to checking for control location unreachability

• Our approach: use abstract regular tree model-checking
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Regular Tree Model-Checking

[KMMPS ’97, BT ’02, AJMO ’02, ALOR ’05]

• Natural generalisation of Regular model-checking

• Configurations : trees (terms)

• Sets of configurations : finite tree automata (bottom-up)

• Operations: finite tree transducers (noted τ)

• Basic verification problem : Computing the transitive closure of a finite tree
transducer
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The verification problem

• Check: τ∗(Init) ∩Bad = ∅

• Compute τ∗ or

• For a given tree automaton A, compute τ∗(A)
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Abstract Regular (Tree) Model Checking

• Compute (α ◦ τ)∗(Init) instead of τ∗(Init)

τ∗(Init) ⊆ (α ◦ τ)∗(Init)

• If (α ◦ τ)∗(Init) ∩Bad = ∅ then answer YES

• else if (α ◦ τ)∗(Init) ∩Bad contains a real counterexample,
then answer NO
else refine the abstraction and start again
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Automata state collapsing as abstractions

• We define an equivalence relation ≡ on automata states

• We define an abstraction function α(A) = A/≡

• We propose several equivalence relations to define abstractions

– States are equivalent if they accept the same trees up to some fixed height
– States are equivalent if their languages have non-empty intersections with the

same predicate tree automata.
– States are equivalent if they are neighbours

• Refinement: choose finer equivalence relation
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Tree automata encoding of pointer manipulating programs

• Encoding of sets of memory configurations

• Encoding of program statements as transducers
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Encoding of shape graphs as trees

• S = {1, . . . , k} finite set of selectors, V finite set of pointer variables

• A shape graph is a tuple SG = (N,S, V,D) where

– N is a finite set of memory nodes,
– N⊥,⊤ = N ∪ {⊥,⊤}
– S : N × S → N⊥,⊤ is a successor function
– V : V → N⊥,⊤ is a mapping that defines where the pointer variables are

currently pointing to, and
– D : N → D defines what (finite) data is stored in the particular memory nodes.
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Example of a shape graph

147 26 10

ZX

null
null

next

prev

next next next

prev prev prev
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Encoding of shape graphs as trees

in the spirit of graph types [KS ’93] and PALE [MS ’02] but different

• Use trees as backbones

• describe links between nodes of the trees using pointer descriptors (with routing
expressions expressing paths in the tree)
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Example
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A tree memory encoding of the DLLThe original DLL Descriptors

null pointers

undefined pointers
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Encoding

• Let S−1 be the set of inverted selectors

• We fix a number of pointer descriptors

– which have a unique marker (indicating where the pointer can point to)
– with a routing expression describing paths in the tress backbone

• Each routing expression is a regular expression on the alphabet of pairs s.n ∈
(S ∪ S−1).Σ where Σ is the alphabet for nodes (data, markers, etc.)

• A tree memory encoding is a tuple (t, µ) where t is a tree memory backbone and
µ a mapping from pointer descriptors to routing expressions.
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Encoding

• [[(t, µ)]] is the set of shape graphs represented by t.

– The nodes of the graph are internal nodes of the tree.
– Links are obtained by following routing expressions

• A tree automata memory encoding is a tuple [[(A, µ)]] with a tree automaton A

• A tree automata memory encoding represents the set of shape graphs [[(A,µ)]] =⋃
t∈L(A) [[(t, µ)]].

• Remarks

– The encoding is not canonical
– (A,µ) and [[(A,µ)]] are two different notions
– Given (A, µ), [[(A,µ)]] can be empty although A is not empty.
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Encoding in Mona

• Use binary trees

• Routing expressions are “implemented” as tree transducers
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Encoding of program statements as transducers

• Each pointer manipulation statement is encoded as a tree transducer

• We add also the current program line (or error location) to the configuration

• Transducers are constructed such that they simulate the effect of program
statements on the corresponding shape graphs
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Non-destructive updates and tests

• x = null

• x = y

• if (x == null) then goto l1 else goto l2;

• x = y->s

– if y->s undef or null update x accordingly
– else mark the y node with �

– apply corresponding routing expression transducer and move �

– remove x and put it into node marked by �

– can be non-deterministic if several targets are possible
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Destructive updates

x->s = y

• To each statement like this a pointer descriptor is associated

• Add the particular pointer descriptor below x

• Add the marker at y

• Update the routing expression by adding the path from x to y

– take shortest path from x to y

– All possible paths will be added
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Dynamic allocation and reallocation

• x = malloc()

– transform a leaf node
– and add corresponding nodes for selectors

• x.s = malloc()

– use the leaf node below x

– and add simple routing expression

• free(x)
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Verification of programs with pointers using ARTMC

• Input structures

– start with a tree automata memory encoding (for example DLLs)
– start with empty shape graph and use a constructor written in C

aDLLHead = malloc();

aDLLHead->prev = null;

x = aDLLHead;

while (random()) {

x->next = malloc();

x->next->prev = x;

x = x->next;

}

x->next = null;

• Applying ARTMC : Check for emptiness is not exact
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Experimental results

Example Time Abs. method |Q| Nref

SLL-creation + test 0.5s predicates 22 0
SLL-reverse + test 6s predicates 45 1
DLL-delete + test 8s finite height 100 0
DLL-insert + test 11s neighbour, predicates 94 0
DLL-reverse + test 13s predicates 48 1

DLL-insertsort 3s predicates 38 0
Inserting into trees + test 12s predicates 91 0

Linking leaves in trees + test 11m15s predicates 217 10
Inserting into list of lists + test 27s predicates 125 1
Deutsch-Schorr-W. tree traversal 3m14s predicates 168 0

SLL: Singly-linked list, DLL: Doubly-linked list
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Conclusion and further work

• new, automatic method for verification of programs with complex dynamic data
structures

• Optimising the prototype implementation

• Checking absence of garbage

• Show termination
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