

RNTL Averiles November 2006 Peter Habermehl

Abstract Tree Regular Model Checking of Complex Dynamic

Data Structures

with Ahmed Bouajjani, Adam Rogalewicz, Tomas Vojnar (Brno)

Peter Habermehl
LIAFA, University Paris 7

November 6th, 2006

1

RNTL Averiles November 2006 Peter Habermehl

Example program

// Doubly-Linked Lists

typedef struct {

DLL *next, *prev;

} DLL;

DLL *DLL_reverse(DLL *x) {

DLL *y,*z;

z = NULL;

y = x->next;

while (y!=NULL) {

x->next = z;

x->prev = y;

z = x; x = y;

y = x->next

}

return x;

}

2

RNTL Averiles November 2006 Peter Habermehl

Properties

• The usual properties of use of memory (absence of intrinsic errors)

• Shape invariants

– Using shape testers like
x = aDLLHead;

while (x != NULL && random())

x = x->next;

if (x != NULL && x->next->prev != x)

error();

– Using formulæ of a logic like

l
next
→

∗

[∃x. p
next
→ x ∧ x 6= ⊥ ∧ ¬(x

prev
→ p)]

which can be translated into shape testers

3

RNTL Averiles November 2006 Peter Habermehl

Verification approach

• Properties are translated to control line unreachability

• Verification using an automata-based framework

– Encode memory configurations (shape graphs) as trees
– Use finite-state tree automata to represent sets of configurations
– Encode program statements as tree transducers (I/O automata)
– Use Abstract Tree Regular Model Checking [BHRV ’05]
∗ Symbolic reachability analysis
∗ Refinable abstractions on automata

• Implemented using Mona and applied to several case studies

4

RNTL Averiles November 2006 Peter Habermehl

Overview

• Properties considered

• Automata based verification approach

– Encoding of sets of memory configurations
– Encoding of program statements as transducers

• Experiments

5

RNTL Averiles November 2006 Peter Habermehl

Properties considered

• Basic consistency of pointer manipulations

– absence of null and undefined pointer dereferences
– no references to deleted nodes

• Shape invariance properties

– like absence of sharing, acyclicity
– if x->next == y in a DLL then also y->prev == x

• Absence of garbage

6

RNTL Averiles November 2006 Peter Habermehl

Specifying shape invariance properties

We describe negations of these properties

• Shape testers

• A logic of bad memory patterns

– translated into shape testers

7

RNTL Averiles November 2006 Peter Habermehl

Shape testers

• Instrumentation code written in extended C

– following pointers backwards
– non-deterministic branching

• Added to the program

Checking consistency of the next and previous pointers

x = aDLLHead;

while (x != NULL && random())

x = x->next;

if (x != NULL && x->next->prev != x)

error();

8

RNTL Averiles November 2006 Peter Habermehl

A logic of bad memory patterns (LBMP)

• allows to describe bad shapes

• V finite set of program variables

• S finite set of selectors

• Φ ::= ∃w1, ...wn.ϕ with W = {w1, ..., wn} set of formulae variables

• ϕ ::= ϕ ∨ ϕ | ψ, ψ ::= ψ ∧ ψ | x̺y | x̺
x, y ∈ V ∪W and ̺ is a reachability formula

• ̺ ::=
s
→|

s
←| ̺+̺ | ̺.̺ | ̺∗ | [σ] where s ∈ S and σ a local neighbourhood formula

• LNF: ∃u1, ..., um.BC(x
s
→ y, x = y) with U = {u1, ..., um} a set of local formula

variables, s ∈ S, x ∈ V ∪W ∪ U ∪ {p}, y ∈ V ∪W ∪ U ∪ {p,⊥,⊤},
p denotes the current position in the shape graph, ⊥ is NULL and ⊤ undefined.

9

RNTL Averiles November 2006 Peter Habermehl

Examples for doubly linked lists

• l
next
→

∗

[p = ⊤]

10

RNTL Averiles November 2006 Peter Habermehl

Examples for doubly linked lists

• l
next
→

∗

[p = ⊤]
The list ends with undefined

11

RNTL Averiles November 2006 Peter Habermehl

Examples for doubly linked lists

• l
next
→

∗

[p = ⊤]
The list ends with undefined

• l[¬(p
prev
→ ⊥)]

12

RNTL Averiles November 2006 Peter Habermehl

Examples for doubly linked lists

• l
next
→

∗

[p = ⊤]
The list ends with undefined

• l[¬(p
prev
→ ⊥)]

the predecessor of the first element is not null

13

RNTL Averiles November 2006 Peter Habermehl

Examples for doubly linked lists

• l
next
→

∗

[p = ⊤]
The list ends with undefined

• l[¬(p
prev
→ ⊥)]

the predecessor of the first element is not null

• l
next
→

∗

[∃x. p
next
→ x ∧ x 6= ⊥ ∧ ¬(x

prev
→ p)]

14

RNTL Averiles November 2006 Peter Habermehl

Examples for doubly linked lists

• l
next
→

∗

[p = ⊤]
The list ends with undefined

• l[¬(p
prev
→ ⊥)]

the predecessor of the first element is not null

• l
next
→

∗

[∃x. p
next
→ x ∧ x 6= ⊥ ∧ ¬(x

prev
→ p)]

the predecessor of the successor of a node is not the node itself

15

RNTL Averiles November 2006 Peter Habermehl

Examples for doubly linked lists

• l
next
→

∗

[p = ⊤]
The list ends with undefined

• l[¬(p
prev
→ ⊥)]

the predecessor of the first element is not null

• l
next
→

∗

[∃x. p
next
→ x ∧ x 6= ⊥ ∧ ¬(x

prev
→ p)]

the predecessor of the successor of a node is not the node itself

• ∃x. l
next
→

∗

[p = x]
next
→

next
→

∗

[p = x]

16

RNTL Averiles November 2006 Peter Habermehl

Examples for doubly linked lists

• l
next
→

∗

[p = ⊤]
The list ends with undefined

• l[¬(p
prev
→ ⊥)]

the predecessor of the first element is not null

• l
next
→

∗

[∃x. p
next
→ x ∧ x 6= ⊥ ∧ ¬(x

prev
→ p)]

the predecessor of the successor of a node is not the node itself

• ∃x. l
next
→

∗

[p = x]
next
→

next
→

∗

[p = x]
the list is cyclic

17

RNTL Averiles November 2006 Peter Habermehl

Translation from LBMP to shape testers

• Suppose that all variables refered to in formula are reachable from V

• One starts by exploring the memory configurations starting from the variables

• go to special location if formula holds

• Disjunction : non-deterministic branching

• Conjunction : series of tests

• Reachability formulae ̺ ::=
s
→|

s
←| ̺+ ̺ | ̺.̺ | ̺∗ | [σ]

–
s
→|

s
← : following the appropriate selectors (forward or backward)

– ̺.̺ : sequencing
– ̺+ ̺ and ̺∗ : non deterministic branching

• [σ] can also be tested easily

18

RNTL Averiles November 2006 Peter Habermehl

The verification problem

• If a basic consistency error is encountered, the program goes to some designated
error location.

• Negations of shape invariance properties are expressed as formulæ of LBMP.

• They are translated into shape testers.

• If an error location is reached, the shape invariance property is broken.

Verification amounts to checking for control location unreachability

• Our approach: use abstract regular tree model-checking

19

RNTL Averiles November 2006 Peter Habermehl

Regular Tree Model-Checking

[KMMPS ’97, BT ’02, AJMO ’02, ALOR ’05]

• Natural generalisation of Regular model-checking

• Configurations : trees (terms)

• Sets of configurations : finite tree automata (bottom-up)

• Operations: finite tree transducers (noted τ)

• Basic verification problem : Computing the transitive closure of a finite tree
transducer

20

RNTL Averiles November 2006 Peter Habermehl

The verification problem

• Check: τ∗(Init) ∩Bad = ∅

• Compute τ∗ or

• For a given tree automaton A, compute τ∗(A)

21

RNTL Averiles November 2006 Peter Habermehl

Abstract Regular (Tree) Model Checking

• Compute (α ◦ τ)∗(Init) instead of τ∗(Init)

τ∗(Init) ⊆ (α ◦ τ)∗(Init)

• If (α ◦ τ)∗(Init) ∩Bad = ∅ then answer YES

• else if (α ◦ τ)∗(Init) ∩Bad contains a real counterexample,
then answer NO
else refine the abstraction and start again

22

RNTL Averiles November 2006 Peter Habermehl

Automata state collapsing as abstractions

• We define an equivalence relation ≡ on automata states

• We define an abstraction function α(A) = A/≡

• We propose several equivalence relations to define abstractions

– States are equivalent if they accept the same trees up to some fixed height
– States are equivalent if their languages have non-empty intersections with the

same predicate tree automata.
– States are equivalent if they are neighbours

• Refinement: choose finer equivalence relation

23

RNTL Averiles November 2006 Peter Habermehl

Tree automata encoding of pointer manipulating programs

• Encoding of sets of memory configurations

• Encoding of program statements as transducers

24

RNTL Averiles November 2006 Peter Habermehl

Encoding of shape graphs as trees

• S = {1, . . . , k} finite set of selectors, V finite set of pointer variables

• A shape graph is a tuple SG = (N,S, V,D) where

– N is a finite set of memory nodes,
– N⊥,⊤ = N ∪ {⊥,⊤}
– S : N × S → N⊥,⊤ is a successor function
– V : V → N⊥,⊤ is a mapping that defines where the pointer variables are

currently pointing to, and
– D : N → D defines what (finite) data is stored in the particular memory nodes.

25

RNTL Averiles November 2006 Peter Habermehl

Example of a shape graph

147 26 10

ZX

null
null

next

prev

next next next

prev prev prev

26

RNTL Averiles November 2006 Peter Habermehl

Encoding of shape graphs as trees

in the spirit of graph types [KS ’93] and PALE [MS ’02] but different

• Use trees as backbones

• describe links between nodes of the trees using pointer descriptors (with routing
expressions expressing paths in the tree)

27

RNTL Averiles November 2006 Peter Habermehl

Example

M2

M1

M1

M2

M2

M1

D1

D1

D1

D2

D2

D2

S = {1, 2}
−1

M1: 1.D1

M2: 1.D2

7

10

14

26 Z

Y null

null

null

X

7

10

14

26

X

Z

Y

S = {1, 2}

A tree memory encoding of the DLLThe original DLL Descriptors

null pointers

undefined pointers

28

RNTL Averiles November 2006 Peter Habermehl

Encoding

• Let S−1 be the set of inverted selectors

• We fix a number of pointer descriptors

– which have a unique marker (indicating where the pointer can point to)
– with a routing expression describing paths in the tress backbone

• Each routing expression is a regular expression on the alphabet of pairs s.n ∈
(S ∪ S−1).Σ where Σ is the alphabet for nodes (data, markers, etc.)

• A tree memory encoding is a tuple (t, µ) where t is a tree memory backbone and
µ a mapping from pointer descriptors to routing expressions.

29

RNTL Averiles November 2006 Peter Habermehl

Encoding

• [[(t, µ)]] is the set of shape graphs represented by t.

– The nodes of the graph are internal nodes of the tree.
– Links are obtained by following routing expressions

• A tree automata memory encoding is a tuple [[(A, µ)]] with a tree automaton A

• A tree automata memory encoding represents the set of shape graphs [[(A,µ)]] =⋃
t∈L(A) [[(t, µ)]].

• Remarks

– The encoding is not canonical
– (A,µ) and [[(A,µ)]] are two different notions
– Given (A, µ), [[(A,µ)]] can be empty although A is not empty.

30

RNTL Averiles November 2006 Peter Habermehl

Encoding in Mona

• Use binary trees

• Routing expressions are “implemented” as tree transducers

31

RNTL Averiles November 2006 Peter Habermehl

Encoding of program statements as transducers

• Each pointer manipulation statement is encoded as a tree transducer

• We add also the current program line (or error location) to the configuration

• Transducers are constructed such that they simulate the effect of program
statements on the corresponding shape graphs

32

RNTL Averiles November 2006 Peter Habermehl

Non-destructive updates and tests

• x = null

• x = y

• if (x == null) then goto l1 else goto l2;

• x = y->s

– if y->s undef or null update x accordingly
– else mark the y node with �

– apply corresponding routing expression transducer and move �

– remove x and put it into node marked by �

– can be non-deterministic if several targets are possible

33

RNTL Averiles November 2006 Peter Habermehl

Destructive updates

x->s = y

• To each statement like this a pointer descriptor is associated

• Add the particular pointer descriptor below x

• Add the marker at y

• Update the routing expression by adding the path from x to y

– take shortest path from x to y

– All possible paths will be added

34

RNTL Averiles November 2006 Peter Habermehl

Dynamic allocation and reallocation

• x = malloc()

– transform a leaf node
– and add corresponding nodes for selectors

• x.s = malloc()

– use the leaf node below x

– and add simple routing expression

• free(x)

35

RNTL Averiles November 2006 Peter Habermehl

Verification of programs with pointers using ARTMC

• Input structures

– start with a tree automata memory encoding (for example DLLs)
– start with empty shape graph and use a constructor written in C

aDLLHead = malloc();

aDLLHead->prev = null;

x = aDLLHead;

while (random()) {

x->next = malloc();

x->next->prev = x;

x = x->next;

}

x->next = null;

• Applying ARTMC : Check for emptiness is not exact

36

RNTL Averiles November 2006 Peter Habermehl

Experimental results

Example Time Abs. method |Q| Nref

SLL-creation + test 0.5s predicates 22 0
SLL-reverse + test 6s predicates 45 1
DLL-delete + test 8s finite height 100 0
DLL-insert + test 11s neighbour, predicates 94 0
DLL-reverse + test 13s predicates 48 1

DLL-insertsort 3s predicates 38 0
Inserting into trees + test 12s predicates 91 0

Linking leaves in trees + test 11m15s predicates 217 10
Inserting into list of lists + test 27s predicates 125 1
Deutsch-Schorr-W. tree traversal 3m14s predicates 168 0

SLL: Singly-linked list, DLL: Doubly-linked list

37

RNTL Averiles November 2006 Peter Habermehl

Conclusion and further work

• new, automatic method for verification of programs with complex dynamic data
structures

• Optimising the prototype implementation

• Checking absence of garbage

• Show termination

38

