Abstract Tree Regular Model Checking of Complex Dynamic Data Structures

with Ahmed Bouajjani, Adam Rogalewicz, Tomas Vojnar (Brno)

Peter Habermehl LIAFA, University Paris 7

November 6th, 2006

Example program

```
// Doubly-Linked Lists
typedef struct {
    DLL *next, *prev;
} DLL;
```

```
DLL *DLL_reverse(DLL *x) {
    DLL *y,*z;
    z = NULL;
    y = x->next;
    while (y!=NULL) {
        x->next = z;
        x->prev = y;
        z = x; x = y;
        y = x->next
    }
    return x;
}
```

Properties

- The usual properties of use of memory (absence of intrinsic errors)
- Shape invariants
 - Using shape testers like x = aDLLHead; while (x != NULL && random()) x = x->next; if (x != NULL && x->next->prev != x) error();
 - Using formulæ of a logic like

$$l \stackrel{next^*}{\to} [\exists x. \ p \stackrel{next}{\to} x \ \land \ x \neq \bot \ \land \ \neg(x \stackrel{prev}{\to} p)]$$

which can be translated into shape testers

Verification approach

- Properties are translated to control line unreachability
- Verification using an automata-based framework
 - Encode memory configurations (shape graphs) as trees
 - Use finite-state tree automata to represent sets of configurations
 - Encode program statements as tree transducers (I/O automata)
 - Use Abstract Tree Regular Model Checking [BHRV '05]
 - * Symbolic reachability analysis
 - * Refinable abstractions on automata
- Implemented using Mona and applied to several case studies

Overview

- Properties considered
- Automata based verification approach
 - Encoding of sets of memory configurations
 - Encoding of program statements as transducers
- Experiments

Properties considered

- Basic consistency of pointer manipulations
 - absence of null and undefined pointer dereferences
 - no references to deleted nodes
- Shape invariance properties
 - like absence of sharing, acyclicity
 - if x->next == y in a DLL then also y->prev == x
- Absence of garbage

Specifying shape invariance properties

We describe negations of these properties

- Shape testers
- A logic of bad memory patterns
 - translated into shape testers

Shape testers

- Instrumentation code written in extended C
 - following pointers backwards
 - non-deterministic branching
- Added to the program

Checking consistency of the next and previous pointers

```
x = aDLLHead;
while (x != NULL && random())
    x = x->next;
if (x != NULL && x->next->prev != x)
    error();
```

A logic of bad memory patterns (LBMP)

- allows to describe bad shapes
- \mathcal{V} finite set of program variables
- \mathcal{S} finite set of selectors
- $\Phi ::= \exists w_1, ..., w_n. \varphi$ with $\mathcal{W} = \{w_1, ..., w_n\}$ set of formulae variables
- $\varphi ::= \varphi \lor \varphi \mid \psi, \ \psi ::= \psi \land \psi \mid x \varrho y \mid x \varrho$ $x, y \in \mathcal{V} \cup \mathcal{W}$ and ϱ is a reachability formula
- $\varrho ::= \stackrel{s}{\rightarrow} | \stackrel{s}{\leftarrow} | \varrho + \varrho | \varrho . \varrho | \varrho^* | [\sigma]$ where $s \in S$ and σ a local neighbourhood formula
- LNF: ∃u₁, ..., u_m.BC(x → y, x = y) with U = {u₁, ..., u_m} a set of local formula variables, s ∈ S, x ∈ V ∪ W ∪ U ∪ {p}, y ∈ V ∪ W ∪ U ∪ {p, ⊥, ⊤}, p denotes the current position in the shape graph, ⊥ is NULL and ⊤ undefined.

• $l \stackrel{next^*}{\rightarrow} [p = \top]$

The list ends with undefined

- $l \stackrel{next^*}{\rightarrow} [p = \top]$ The list ends with undefined
- $l[\neg(p \xrightarrow{prev} \bot)]$

- $l \stackrel{next^*}{\rightarrow} [p = \top]$ The list ends with undefined
- $l[\neg(p \xrightarrow{prev} \bot)]$

the predecessor of the first element is not null

- $l \stackrel{next^*}{\rightarrow} [p = \top]$ The list ends with undefined
- $l[\neg(p \stackrel{prev}{\rightarrow} \bot)]$ the predecessor of the first element is not null

•
$$l \xrightarrow{next^*} [\exists x. \ p \xrightarrow{next} x \land x \neq \bot \land \neg (x \xrightarrow{prev} p)]$$

- $l \stackrel{next^*}{\rightarrow} [p = \top]$ The list ends with undefined
- $l[\neg(p \stackrel{prev}{\rightarrow} \bot)]$ the predecessor of the first element is not null
- $l \stackrel{next^*}{\rightarrow} [\exists x. \ p \stackrel{next}{\rightarrow} x \land x \neq \bot \land \neg (x \stackrel{prev}{\rightarrow} p)]$ the predecessor of the successor of a node is not the node itself

- $l \stackrel{next^*}{\rightarrow} [p = \top]$ The list ends with undefined
- $l[\neg(p \stackrel{prev}{\rightarrow} \bot)]$ the predecessor of the first element is not null
- $l \xrightarrow{next^*} [\exists x. \ p \xrightarrow{next} x \land x \neq \bot \land \neg(x \xrightarrow{prev} p)]$ the predecessor of the successor of a node is not the node itself
- $\exists x. \ l \xrightarrow{next^*} [p = x] \xrightarrow{nextnext^*} [p = x]$

- $l \stackrel{next^*}{\rightarrow} [p = \top]$ The list ends with undefined
- $l[\neg(p \stackrel{prev}{\rightarrow} \bot)]$ the predecessor of the first element is not null
- $l \xrightarrow{next^*} [\exists x. \ p \xrightarrow{next} x \land x \neq \bot \land \neg(x \xrightarrow{prev} p)]$ the predecessor of the successor of a node is not the node itself
- $\exists x. \ l \stackrel{next^*}{\to} [p = x] \stackrel{nextnext^*}{\to} [p = x]$ the list is cyclic

Translation from LBMP to shape testers

- $\bullet\,$ Suppose that all variables refered to in formula are reachable from ${\cal V}$
- One starts by exploring the memory configurations starting from the variables
- go to special location if formula holds
- Disjunction : non-deterministic branching
- Conjunction : series of tests
- Reachability formulae $\varrho ::= \stackrel{s}{\rightarrow} \stackrel{s}{\leftarrow} | \varrho + \varrho | \varrho . \varrho | \varrho^* | [\sigma]$
 - $\xrightarrow{s} | \xleftarrow{s}$: following the appropriate selectors (forward or backward)
 - $\varrho.\varrho$: sequencing
 - $\varrho + \varrho$ and ϱ^* : non deterministic branching
- $[\sigma]$ can also be tested easily

The verification problem

- If a basic consistency error is encountered, the program goes to some designated error location.
- Negations of shape invariance properties are expressed as formulæ of LBMP.
- They are translated into shape testers.
- If an error location is reached, the shape invariance property is broken.

Verification amounts to checking for control location unreachability

• Our approach: use abstract regular tree model-checking

Regular Tree Model-Checking

[KMMPS '97, BT '02, AJMO '02, ALOR '05]

- Natural generalisation of Regular model-checking
- Configurations : trees (terms)
- Sets of configurations : finite tree automata (bottom-up)
- Operations: finite tree transducers (noted τ)
- Basic verification problem : Computing the transitive closure of a finite tree transducer

The verification problem

- Check: $\tau^*(Init) \cap Bad = \emptyset$
- Compute τ^* or
- For a given tree automaton A, compute $\tau^*(A)$

Abstract Regular (Tree) Model Checking

• Compute $(\alpha \circ \tau)^*(Init)$ instead of $\tau^*(Init)$

 $\tau^*(Init) \subseteq (\alpha \circ \tau)^*(Init)$

- If $(\alpha \circ \tau)^*(Init) \cap Bad = \emptyset$ then answer YES
- else if $(\alpha \circ \tau)^*(Init) \cap Bad$ contains a real counterexample, then answer NO else refine the abstraction and start again

Automata state collapsing as abstractions

- We define an equivalence relation \equiv on automata states
- We define an abstraction function $\alpha(A) = A / \equiv$
- We propose several equivalence relations to define abstractions
 - States are equivalent if they accept the same trees up to some fixed height
 - States are equivalent if their languages have non-empty intersections with the same predicate tree automata.
 - States are equivalent if they are neighbours
- Refinement: choose finer equivalence relation

Tree automata encoding of pointer manipulating programs

- Encoding of sets of memory configurations
- Encoding of program statements as transducers

Encoding of shape graphs as trees

- $S = \{1, \ldots, k\}$ finite set of selectors, V finite set of pointer variables
- A shape graph is a tuple SG = (N, S, V, D) where
 - ${\cal N}$ is a finite set of memory nodes,
 - $N_{\perp,\top} = N \cup \{\perp,\top\}$
 - $S:N\times \mathcal{S} \to N_{\perp,\top}$ is a successor function
 - $V:\mathcal{V}\to N_{\perp,\top}$ is a mapping that defines where the pointer variables are currently pointing to, and
 - $D: N \rightarrow \mathcal{D}$ defines what (finite) data is stored in the particular memory nodes.

Example of a shape graph

Encoding of shape graphs as trees

in the spirit of graph types [KS '93] and PALE [MS '02] but different

- Use trees as backbones
- describe links between nodes of the trees using pointer descriptors (with routing expressions expressing paths in the tree)

28

Encoding

- Let \mathcal{S}^{-1} be the set of inverted selectors
- We fix a number of pointer descriptors
 - which have a unique marker (indicating where the pointer can point to)
 - with a routing expression describing paths in the tress backbone
- Each routing expression is a regular expression on the alphabet of pairs $s.n \in (S \cup S^{-1}).\Sigma$ where Σ is the alphabet for nodes (data, markers, etc.)
- A tree memory encoding is a tuple (t, μ) where t is a tree memory backbone and μ a mapping from pointer descriptors to routing expressions.

Encoding

- $\llbracket (t, \mu) \rrbracket$ is the set of shape graphs represented by t.
 - The nodes of the graph are internal nodes of the tree.
 - Links are obtained by following routing expressions
- A tree automata memory encoding is a tuple $\llbracket (A, \mu) \rrbracket$ with a tree automaton A
- A tree automata memory encoding represents the set of shape graphs $\llbracket (A, \mu) \rrbracket = \bigcup_{t \in L(A)} \llbracket (t, \mu) \rrbracket$.
- Remarks
 - The encoding is not canonical
 - (A,μ) and $[\![(A,\mu)]\!]$ are two different notions
 - Given (A, μ) , $[\![(A, \mu)]\!]$ can be empty although A is not empty.

Encoding in Mona

- Use binary trees
- Routing expressions are "implemented" as tree transducers

Encoding of program statements as transducers

- Each pointer manipulation statement is encoded as a tree transducer
- We add also the current program line (or error location) to the configuration
- Transducers are constructed such that they simulate the effect of program statements on the corresponding shape graphs

Non-destructive updates and tests

- x = null
- x = y
- if (x == null) then goto 11 else goto 12;
- x = y->s
 - if y->s undef or null update x accordingly
 - else mark the y node with \blacklozenge
 - apply corresponding routing expression transducer and move \blacklozenge
 - remove ${\bf x}$ and put it into node marked by \blacklozenge
 - can be non-deterministic if several targets are possible

Destructive updates

 $x \rightarrow s = y$

- To each statement like this a pointer descriptor is associated
- Add the particular pointer descriptor below x
- Add the marker at y
- Update the routing expression by adding the path from \boldsymbol{x} to \boldsymbol{y}
 - take shortest path from \boldsymbol{x} to \boldsymbol{y}
 - All possible paths will be added

Dynamic allocation and reallocation

- x = malloc()
 - transform a leaf node
 - and add corresponding nodes for selectors
- x.s = malloc()
 - use the leaf node below $\boldsymbol{\mathrm{x}}$
 - and add simple routing expression
- free(x)

Verification of programs with pointers using ARTMC

- Input structures
 - start with a tree automata memory encoding (for example DLLs)
 - start with empty shape graph and use a constructor written in C

```
aDLLHead = malloc();
aDLLHead->prev = null;
x = aDLLHead;
while (random()) {
    x->next = malloc();
    x->next->prev = x;
    x = x->next;
}
x = x->next;
```

• Applying ARTMC : Check for emptiness is not exact

Experimental results

Example	Time	Abs. method	Q	N_{ref}
SLL-creation + test	0.5s	predicates	22	0
SLL-reverse + test	бs	predicates	45	1
DLL-delete + test	8s	finite height	100	0
DLL-insert + test	11s	neighbour, predicates	94	0
DLL-reverse + test	13s	predicates	48	1
DLL-insertsort	3s	predicates	38	0
Inserting into trees + test	12s	predicates	91	0
Linking leaves in trees + test	11m15s	predicates	217	10
Inserting into list of lists $+$ test	27s	predicates	125	1
Deutsch-Schorr-W. tree traversal	3m14s	predicates	168	0

SLL: Singly-linked list, DLL: Doubly-linked list

Conclusion and further work

- new, automatic method for verification of programs with complex dynamic data structures
- Optimising the prototype implementation
- Checking absence of garbage
- Show termination