Decidability of trace equivalence for protocols with nonces

Rémy Chrétien1, Véronique Cortier2 and Stéphanie Delaune1

1LSV, ENS Cachan & CNRS & INRIA Saclay Île-de-France
2LORIA - CNRS

25th February 2015
Cryptographic protocols everywhere

- small programs designed to secure communication (e.g. secrecy)
- use cryptographic primitives (e.g. encryption, signature,)
Protocols and Security

A difficult design:

- French e-passport (2010): an attacker can trace a particular user.
Many security properties are equivalence properties: strong secrecy, anonymity, unlinkability...

Trace equivalence is undecidable in general (and for large subclasses: one variable and choice is enough).
Where does undecidability come from?

Undecidability encodings rely on two key aspects:

- the ability for the protocol to **securely forward messages** (with honest encryption)
- the ability for the protocol to **loop**, *i.e.* re-use messages from the end of a session into a new one.

We need to restrict these properties while keeping our class practical...
Approach

How to find a decidable class of protocols?

1. CONCUR’14 to focus on well-typed attacks only,
2. dependancy graphs to isolate potential causal dependancies between actions in a well-typed execution,
3. prove each well-typed execution is compatible with the dependancy graph,
4. consider protocols with acyclic dependancy graph to bound the length of attack traces.
The result

Decidability of trace equivalence

Let P and Q be two simple protocols type-compliant w.r.t. some structure-preserving typing systems $(\mathcal{T}_P, \delta_P)$ and $(\mathcal{T}_Q, \delta_Q)$, and with acyclic dependency graphs. The problem of deciding whether P and Q are in trace equivalence (i.e. $P \approx Q$) is decidable.
Decidability of trace equivalence

Let P and Q be two simple protocols type-compliant w.r.t. some structure-preserving typing systems $(\mathcal{T}_P, \delta_P)$ and $(\mathcal{T}_Q, \delta_Q)$, and with acyclic dependency graphs. The problem of deciding whether P and Q are in trace equivalence (i.e. $P \approx Q$) is decidable.

Some intuition:
- simple: protocols with explicit execution flow,
- type-compliant w.r.t. structure-preserving typing systems: tagged protocols,
- acyclic dependency graph: no loop for the attacker to abuse.
1 Introduction

2 The model

3 Typing and dependency graphs

4 Refinements
The protocols

- Our primitives: pairs and symmetric encryption.
- We only allow encryption with atomic keys.
- Our grammar:

\[
P, Q := 0 \mid \alpha : \text{in}(c, u).P \mid \alpha : \text{out}(c, u).P \mid (P \mid Q) \mid !P \mid \text{new } n.P \mid \text{new } c'.\text{out}(c, c').P
\]
Semantics

\[(\alpha : \text{in}(c,u).P \cup P; \phi) \xrightarrow{\text{in}(c,R)} (P\sigma \cup P; \phi) \quad \text{where } R \text{ is a recipe such that } R\phi\downarrow \text{ is a message and } R\phi\downarrow = u\sigma \text{ for some } \sigma \text{ with } \text{dom}(\sigma) = \text{vars}(u)\]
(α : out(c, u).\(P \cup \mathcal{P}; \phi \)) \xrightarrow{\text{out}(c,w_{i+1})} (P \cup \mathcal{P}; \phi \cup \{w_{i+1} \triangleright u\})

where \(u \) is a message and \(i \) is the number of elements in \(\phi \)
(new c'.out(c, c')).$P \cup \mathcal{P}; \phi$ \xrightarrow{\text{out}(c, ch_i)} (P\{ch_i / c'\} \cup \mathcal{P}; \phi)

where ch_i is the “next” fresh channel name available in Ch^{fresh}.
(new $n.\mathcal{P} \cup \mathcal{P}; \phi) \xrightarrow{\tau} (\mathcal{P}[^{n'}_n] \cup \mathcal{P}; \phi)$ where n' is a fresh name in \mathcal{N}
(\!P \cup \mathcal{P}; \phi) \xrightarrow{\tau} (P \cup \!P \cup \mathcal{P}; \phi)
Equivalences

Static equivalence

\(\phi_1 \) and \(\phi_2 \) are **statically equivalent**, \(\phi_1 \sim \phi_2 \), when \(\text{dom}(\phi_1) = \text{dom}(\phi_2) \) and:

- for any recipe \(R \), \(R\phi_1 \) is a message iff \(R\phi_2 \downarrow \) is a message;
- for all recipes \(R_1 \) and \(R_2 \) such that \(R_1\phi_1 \downarrow, R_2\phi_1 \downarrow \) are messages, we have that \(R_1\phi_1 \downarrow = R_2\phi_1 \downarrow \) iff \(R_1\phi_2 \downarrow = R_2\phi_2 \downarrow \).
Equivalences

Static equivalence

ϕ_1 and ϕ_2 are **statically equivalent**, $\phi_1 \sim \phi_2$, when $\text{dom}(\phi_1) = \text{dom}(\phi_2)$ and:

- for any recipe R, $R\phi_1$ is a message iff $R\phi_2\downarrow$ is a message;
- for all recipes R_1 and R_2 such that $R_1\phi_1\downarrow$, $R_2\phi_1\downarrow$ are messages, we have that $R_1\phi_1\downarrow = R_2\phi_1\downarrow$ iff $R_1\phi_2\downarrow = R_2\phi_2\downarrow$.

Trace equivalence

A protocol P is **trace included** in a protocol Q, written $P \sqsubseteq Q$, if for every $(\text{tr}, \phi) \in \text{trace}(P)$, there exists $(\text{tr}', \phi') \in \text{trace}(Q)$ such that $\text{tr} = \text{tr}'$ and $\phi \sim \phi'$. The protocols P and Q are **trace equivalent**, written $P \approx Q$, if $P \sqsubseteq Q$ and $Q \sqsubseteq P$.
Simple protocols

A simple protocol P is a protocol of the form

$$\!\text{new } c_1'.\text{out}(c_1, c_1').B_1 \mid \ldots \mid \!\text{new } c_m'.\text{out}(c_m, c_m').B_m \mid B_{m+1} \mid \ldots \mid B_{m+n}$$

where each B_i is a ground process on channel c_i' (resp. c_i) built using the following grammar:

$$B := 0 \mid \alpha : \text{in}(c_i', u).B \mid \alpha : \text{out}(c_i', u).B \mid \text{new } n.B$$

Moreover, we assume that $c_1, \ldots, c_n, c_{n+1}, \ldots, c_{n+m}$ are pairwise distinct.
1 Introduction

2 The model

3 Typing and dependency graphs

4 Refinements
A structure-preserving typing system is a pair \((\mathcal{T}_0, \delta_0)\) where \(\mathcal{T}_0\) is a set of elements called atomic types, and \(\delta_0\) is a function mapping atomic terms in \(\Sigma_0 \cup \mathcal{N} \cup \mathcal{X}\) to types \(\tau\) generated using the following grammar:

\[
\tau, \tau_1, \tau_2 = \tau_0 \mid \langle \tau_1, \tau_2 \rangle \mid \text{enc}(\tau_1, \tau_2) \text{ with } \tau_0 \in \mathcal{T}_0.
\]

Then, \(\delta_0\) is extended to constructor terms as follows:

\[
\delta_0(f(t_1, \ldots, t_n)) = f(\delta_0(t_1), \ldots, \delta_0(t_n)) \text{ with } f \in \Sigma_c.
\]
Type-compliant protocols

Type-compliant protocols, ex: tagged protocols

Type-compliant protocols

\(P \) is **type-compliant w.r.t.** \((T, \delta)\) if for every \(t, t' \in ESt(\text{unfold}^2(P))\),

\[t \text{ and } t \text{ unifiable } \implies \delta(t) = \delta(t') \]
Example

Denning-Sacco protocol

1. $A \rightarrow S : A, B$
2. $S \rightarrow A : \{B, K_{ab}, \{K_{ab}, A\}K_{bs}\}K_{as}$
3. $A \rightarrow B : \{K_{ab}, A\}K_{bs}$

The formal specification

$$P = \text{!new } c_1.\text{out}(c_A, c_1).P_A \mid \text{!new } c_2.\text{out}(c_B, c_2).P_B$$
$$\mid \text{!new } c_3.\text{out}(c_S, c_3).P_S$$

$$P_A = \begin{align*}
\alpha_1 &: \text{out}(c_1, \langle a, b \rangle).
\alpha_2 &: \text{in}(c_1, \text{enc}(\langle b, x_{AB}, x_B \rangle, k_{as})).
\alpha_3 &: \text{out}(c_1, x_B)
\end{align*}$$

$$P_B = \begin{align*}
\beta_1 &: \text{in}(c_2, \text{enc}(\langle y_{AB}, a \rangle, k_{bs})).
\beta_2 &: \text{out}(c_2, \text{enc}(m_1, y_{AB}))
\end{align*}$$

$$P_S = \begin{align*}
\gamma_1 &: \text{in}(c_3, \langle a, b \rangle). \text{new } k_{ab}.
\gamma_2 &: \text{out}(c_3, \text{enc}(\langle b, k_{ab}, \text{enc}(\langle k_{ab}, a \rangle, k_{bs}) \rangle, k_{as}))
\end{align*}$$
Example

\[P_A = \alpha_1 : \text{out}(c_1, \langle a, b \rangle). \]
\[\alpha_2 : \text{in}(c_1, \text{enc}(\langle b, x_{AB}, x_B \rangle, k_{as})). \]
\[\alpha_3 : \text{out}(c_1, x_B) \]

\[P_B = \beta_1 : \text{in}(c_2, \text{enc}(\langle y_{AB}, a \rangle, k_{bs})). \]
\[\beta_2 : \text{out}(c_2, \text{enc}(m_1, y_{AB})) \]

\[P_S = \gamma_1 : \text{in}(c_3, \langle a, b \rangle). \text{new } k_{ab}. \]
\[\gamma_2 : \text{out}(c_3, \text{enc}(\langle b, k_{ab}, \text{enc}(\langle k_{ab}, a \rangle, k_{bs}) \rangle, k_{as})) \]

the typing function \(\delta \)

\[\delta(a) = \tau_a \]
\[\delta(b) = \tau_b \]
\[\delta(m_1) = \tau_m \]
\[\delta(k_{AB}) = \tau_{kab} \]
\[\delta(k_{AS}) = \tau_{kas} \]
\[\delta(k_{BS}) = \tau_{kbs} \]
\[\delta(x_{AB}) = \tau_{kab} \]
\[\delta(y_{AB}) = \tau_{kab} \]
\[\delta(x_B) = \text{enc}(\langle \tau_{kab}, \tau_a \rangle, \tau_{kbs}) \]
Dependancy graph

What is the dependancy graph of P made of?

- Vertices : the labels of P
- Edges : of 3 kinds
 1. **sequential** dependancy: if two actions follow each other in $P\delta$,
 2. **data** dependancy: if a deducible subterm of an input in $P\delta$ appears as a deducible subterm of an output in $P\delta$,
 3. **key** dependancy: if a key in an output in $P\delta$ can be deduced with the aid of another key, deducible in another output in $P\delta$.

Rémy Chrétien (LSV)
GdT SECSI
25th February 2015 18 / 30
Dependancy graph

$P_A\delta$, $P_B\delta$ and $P_S\delta$

$\alpha_1 : \text{out}(c_1, \langle \tau_a, \tau_b \rangle)$.
$\alpha_2 : \text{in}(c_1, \text{enc}(\langle \tau_b, \tau_{kab}, \text{enc}(\langle \tau_{kab}, \tau_a \rangle, \tau_{kbs}) \rangle, \tau_{kas}))$.
$\alpha_3 : \text{out}(c_1, \text{enc}(\langle \tau_{kab}, \tau_a \rangle, \tau_{kbs}))$

$\beta_1 : \text{in}(c_2, \text{enc}(\langle \tau_{kab}, \tau_a \rangle, \tau_{kbs}))$

$\gamma_1 : \text{in}(c_3, \langle \tau_a, \tau_b \rangle)$. new τ_{kab}.
$\gamma_2 : \text{out}(c_3, \text{enc}(\langle \tau_b, \tau_{kab}, \text{enc}(\langle \tau_{kab}, \tau_a \rangle, \tau_{kbs}) \rangle, \tau_{kas}))$

τ_a, τ_b are public types; τ_{kbs} and τ_{kas} are honest types.
A more complex scenario

What happens when A and S communicate with C dishonest (α'_i and γ'_i) and when B and S talk with C (β''_i and γ''_i)?

$$
\begin{align*}
\alpha_1 & \quad \gamma_1 & \quad \alpha'_1 & \quad \gamma'_1 \\
\alpha_2 & \quad \gamma_2 & \quad \alpha'_2 & \quad \gamma'_2 \\
\alpha_3 & \quad \beta_1 & \quad \gamma''_2 & \quad \beta''_1
\end{align*}
$$

\[\begin{array}{l}
P''_B = \beta''_1 : \text{in}(c_2, \text{enc}(\langle y_{CB}, c \rangle, k_{bs})). \\
P''_S = \gamma_1 : \text{in}(c_3, \langle c, b \rangle). \text{ new } k_{cb}. \\
\gamma''_2 : \text{out}(c_3, \text{enc}(\langle b, k_{cb}, \text{enc}(\langle k_{cb}, c \rangle, k_{bs}) \rangle, k_{cs})).
\end{array}\]
The result

Decidability of trace equivalence

Let P and Q be two simple protocols type-compliant w.r.t. some structure-preserving typing systems $(\mathcal{T}_P, \delta_P)$ and $(\mathcal{T}_Q, \delta_Q)$, and with acyclic dependency graphs. The problem of deciding whether P and Q are in trace equivalence (i.e. $P \approx Q$) is decidable.

Denning-Sacco and Wide-Mouthed Frog fall into this class.
1 Introduction

2 The model

3 Typing and dependancy graphs

4 Refinements
Needham-Schroeder protocol

1. $A \rightarrow S : A, B, N_a$
2. $S \rightarrow A : \{N_a, B, K_{ab}, \{K_{ab}, A\}K_{bs}\}K_{as}$
3. $A \rightarrow B : \{K_{ab}, A\}K_{bs}$
4. $B \rightarrow A : \{\text{req}, N_b\}K_{ab}$
5. $A \rightarrow B : \{\text{rep}, N_b\}K_{ab}$
Refined dependancy graph

How to deal with these acyclic graphs?

- introduce a (semantic) notion of **marking** to pinpoint terms which are useless to the attacker,
- propose a (syntactic) **criterion** to generate such markings in practice,
- and use a **refined** notion of the dependancy graph.
Refined dependancy graph

Needham-Schroeder protocol

1. $A \rightarrow S : A, B, N_a$
2. $S \rightarrow A : \{ N_a, B, K_{ab}, \{ K_{ab}, A \} \}_{K_{bs}} K_{as}$
3. $A \rightarrow B : \{ K_{ab}, A \}_{K_{bs}}$
4. $B \rightarrow A : \{ \text{req}, N_b \}_{K_{ab}}$
5. $A \rightarrow B : \{ \text{rep}, N_b \}_{K_{ab}}$

→ we can pinpoint position 1.2 in α_5.

Rémy Chrétien (LSV) GdT SECSI
25th February 2015 25 / 30
The (refined) result

Decidability of trace equivalence

Let P and Q be two simple protocols type-compliant w.r.t. some structure-preserving typing systems (T_P, δ_P) and (T_Q, δ_Q), and with acyclic refined dependency graphs. The problem of deciding whether P and Q are in trace equivalence (i.e. $P \approx Q$) is decidable.

<table>
<thead>
<tr>
<th></th>
<th>Dependency graph</th>
<th>In our class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal</td>
<td>Refined</td>
</tr>
<tr>
<td>Denning-Sacco</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Needham-Schroeder</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Otway-Rees</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Yahalom (Paulson)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Wide-Mouthed-Frog</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Yahalom</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Kao-Chow (modified)</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Figure: A ✓ means that the corresponding dependency graph is acyclic.
Proof outline

Our proof can be summarised as follows:

1. We first rely on our type-compliance assumption. We show that we can restrict our attention to witnesses that are well-typed and we further show that each message occurring in such a trace can be computed as soon as possible.

2. Then, we show that all the dependencies occurring in such a well-typed and asap trace comply with the dependency graph. Hence, we bound the width as well as the depth of such a witness exploiting the acyclicity of our dependency graph.

3. Lastly, we explain how to bound the length of a minimal witness:

\[
2(1 + \|\text{out}_P\|)^{\text{depth}(G_P)+1}(1 + \|\text{in}_P\|(1 + \|\text{out}_P\|)^{\text{depth}(G_P)+1})^{\text{depth}(G_P)+1}.
\]
Conclusion

We obtained:

- a **decidability** result for equivalence of simple acyclic type-compliant protocols,
- which extends existing results for **reachability**;
- along with **syntactic/semantic criterion** to easily obtain acyclic protocols,
- and most of the studied examples fall into this class.
Future work

What remains to be done:

- extend our signature to asymmetric cryptography,
- relax the hypothesis of simple protocols (to action-determinate)
- implement a tool to automatically compute et verify the acyclicity of any protocol.
Thank you for your attention.