
Formal Verification of Timed VHDL Programs
A. Bara1 P. Bazargan-Sabet1 R. Chevallier2

E. Encrenaz1 D. Ledu1 P. Renault1

1 : LIP6, Université Pierre et Marie Curie (UPMC), CNRS, France

2 : STMicroelectronics, TR&D, Central CAD, Crolles1, France

This work is partially supported by French Research Agency ANR, project ARFU-VALMEM.

Abstract— The verification of timed digital circuits is an
important issue. These circuits are composed by logical gates,
each of them being associated with propagation delays. The
analysis of such circuits is necessary to identify criticalpath
and adjust the clock period of the circuit or to determine
the stability period of input/ouput signals. These circuits are
represented by a functional model described in VHDL and a
timing model associating propagation delays to each functional
block. This model is translated into timed automata formalism
upon which classical simulation or model checking verification
can be performed.

This method rises two problems: 1) Propagation delays as-
sociated to a gate depend on the transistor assembly and the
manufacturer’s technology. How do we associate propagation
delays to a logical gate ? 2) How to automatically translate a
VHDL functional description, combined with propagation delays,
into timed automata ? This paper addresses these two problems.
It presents a method automating the verification of VHDL de-
scriptions, augmented with interval bounded propagation delays,
obtained by electrical simulation of the transistor model of the
gates.

I. I NTRODUCTION

Timing verification has been a critical factor in design flow
because of the complexity of modern chip. At transistor level,
the two main methods used to verify the timing characteristics
of a digital circuit are : electrical simulation [1] and static
timing analysis [10]. Electrical simulation gives very accurate
results. But, due to the complexity of the transistors models
and the number of transistor elements, electrical simulations
are very slow. Another drawback is that electrical simulations
are based on simulation and patterns are necessary. So, the
exhaustiveness of electrical simulation depends on the number
and the quality of the patterns used, and the result is not
associated with an uncertainty margin. Static timing analysis
methods (STA) give the longest path in a reasonable execution
time. But, these methods do not take into account the corre-
lation between signals. False paths have to be deleted from
the list of longest paths provided by STA tools, and must be
found by the circuit designer manually. This step can take a
lot of time.

The alternative is to work at register-transfert level (RTL)
using functional abstraction method [12]. Functional abstrac-
tion method computes the functional description of the block
at RTL level from transistor level net list. The simulation
performance is dramatically improved but this method is
limited because it does not check the internal timings of the

block. So, the RTL description of a digital circuit cannot be
used directly for timing verification.

To go through these limitations, we propose to combine two
different views of the behavior of a circuit :

• a functional view, described in RTL-synthesizable VHDL.
This view is directly written by the designer (standard-
cell approach), or has been abstracted from the transistor
description (full-custom design)

• a timed view, associating to each circuit’s element (either
combinatorial or sequential) a set of propagation delays.
These delays have been obtained by electrical simulation
of the transistor model of each circuit’s element.

These two views are merged into the timed automata formal-
ism [2], which is devoted to the modeling and analysis of
discrete events systems whose functionality highly depends on
delays of actions. The obtained model can be used to perform
timed simulations at RTL abstraction level, which speeds up
simulation times.

Furthermore, timed automata formalism can be used to
formally prove some complex timed properties, such as the
maximal response time of the system, or the stability period
of input and output signalsfor a set of environment behaviors,
varying the input sequences and the delays between events. It
can also give information on the margin of error of timing
characteristics and extract some timed parametric constraints.

The subsequent sections describe our verification flow. In
the second section an overview of the functional and timed
extraction engine is developed. Its output is translated automat-
ically into the formal model by a tool presented in section 3.
The section 4 concentrates on timed formal verification applied
to several circuits.

II. FROM TRANSISTORLEVEL TO TIMING EXTRACTION

The problem of functional abstraction has been addressed
since several years. Two main approaches have been em-
ployed.

The pattern matching technique [15] consists of identifying
a known transistor structure inside the circuit’s description
seen as a transistor network. Each transistor structure is tied
up to a gate with a given functional and timing behavior.

The alternative approach relies on a formal abstraction
method. It consists of cutting the circuit into Channel Con-
nected Components (CCC) [8]. Each CCC can be seen as
a stand alone gate. The conduction conditions of paths that



connect the output of each CCC to Vdd or to Vss are then
analyzed resulting to the boolean expression of the gate.

Our approach is based on this later technique and does not
require a preliminary knowledge of the circuit. Although the
abstraction process may be more complex to set up and more
time consuming, from the timing analysis point of view this
method confers a great advantage to the abstracted description.
It ensures that the abstraction’s result is an interconnection of
CCCs, each CCC being electrically isolated from the other
components. Thus, the timing characteristics of each CCC
can be evaluated independently. This step is called the timing
abstraction.

The timing abstraction involves a timing model and a timing
characterization method.

A. Timing model

The timing model defines how the behavior of a gate is
seen from the timing point of view. The paradigm of State
Transition Graph (STG) can be used as a general model of
the timing behavior. The concept is similar to [13] where
a State Transition Graph for Power Estimation is presented.
Here, each gate is abstracted as a set of states (graph vertices).
The transition between two states (a graph’s edge) that exhibits
a modification of the gate’s output state may be characterized
from the timing point of view. For our concerns, the timing
characteristics are reduced to the propagation delays froman
input to the output.

Various kinds of STGs with different level of complexity
and accuracy can be considered.

The simplest STG model is thegeneral inverter model.
The STG of each gate has only two states regardless of the
number of its inputs. Each state represents an electrical level
of the gate’s output. The transition from one state to the other
is characterized by the propagation delay to the rising or the
falling edge of the output. Obviously, the input that produces
the transition of the output does not appear in this model
and the propagation delay should summarize all the different
situations that may result to a rising or a falling transition of
the output. This can be done by attributing to a graph edge
the maximal, the minimal or the average delay of the different
transitions or an interval of propagation delay. In all the cases,
the ignorance of the source of transition affects the precision of
the global timing verification step. The maximal delay through
the overall circuit may be overestimated whereas the minimal
delay tends to be underestimated.

The input-output STG, represents anN-input gate as a set
of N independent graphs. Each graph describes the timing
behavior of the output regarding the transition of a given
input. This model incorporates the knowledge of the source
of transition and offers a higher accuracy. Even though, the
configuration of the other inputs during the transition is
ignored. The lack of this information may introduce some
error in the global timing verification due to the functional
correlation of signals within the circuit. Figure 1 illustrates
this situation. Assuming that the worst configuration for the
transition ofA to D is B=1 andC=0, the correlation between

Fig. 1. Example of signal correlation

C and E inhibits this configuration. As a result, the overall
propagation delay fromA to F will be overestimated.

A more complex STG overcomes this inconvenient. In this
model, each state represents a configuration of inputs. The
transition between two states that produces a change on the
output is characterized. In counter part, the complexity grows
as2N for an N-input gate.

The complete STG is even more accurate with a higher
complexity. It takes into account not only the configurationof
inputs but also the state of the gate’s internal nodes that may
be charged or discharged.

In practice, the timing model and the number of propagation
delays have a direct impact on the complexity of the timed
automata. Hence, to reduce the expansion of these automata,
we consider an intermediate STG where a state is coded as
a configuration of inputs, but where multiple input transitions
are excluded. Then, a functional analysis of signal correlations
is applied to reduce the STG to those transitions that may
effectively be produced in the circuit.

B. Timing characterization method

Regardless of the type of STG, a method should be defined
to compute the timing characteristics associated with each
edge. Obviously, an accurate evaluation of the propagation
delays requires the knowledge of the gate’s structure in terms
of transistors. The wire that connects two gates has also a
significant effect on the delay. These two informations should
be preserved through the functional abstraction process. Two
types of evaluation methods may be considered.

A first approach consists in setting up a direct expression
of the propagation delay. This expression is derived from the
resolution of the set of differential equations that denotethe
charge or the discharge of the gate’s output through a specific
path to Vdd or to Vss. Although this approach seems very
attractive in terms of evaluation time, it shows a poor accuracy.
In fact, the formal resolution of the differential equations
implies a drastic simplification of the gate’s structure, ofthe
wire’s description as well as of the transistor’s model.

The second approach relies on the classic electrical simula-
tion. The propagation delays can be extracted from a SPICE
simulation of the gate as a stand alone circuit. The results tend
to exhibit a high accuracy and the simulation time remains
reasonable. Nevertheless, slight differences can be observed
compared to the delays extracted from a simulation of the
whole circuit. The differences come from 3 factors.

• The transition slope of the gate’s input is of the mere
importance. It should be as close as possible to the output
slope of the gate connected to the input.



• The absence of the gate connected to the output make
some coupling capacitance being neglected.

• The absence of the power grid and the IR-drop phenom-
ena tends to underestimate the delays.

The experience shows that error introduced by these factors
is less than 5% compared to a global simulation of the circuit.

As a result, the functional and timing abstraction step
produces a VHDL description enclosing the functional aspect
and a separate file describing the STG of each gate and the
propagation delays.

III. A UTOMATIC TRANSLATION OF TIMED VHDL INTO

TIMED AUTOMATA

This section introduces the timed automata formalism,
presents the VHDL subset and timing model we consider,
describes the translation algorithm and comment our modeling
choices.

A. Basic model of Timed Automata

Roughly speaking, a timed automaton [2] is a finite state
automaton enriched with(symbolic) clocksthat evolve at the
same uniform rate, and can be reset to zero. Astate is a pair
(ℓ, v) whereℓ is a location (or “control state”), andv a clock
valuation. Each location is associated with a conjunction of
linear constraints over clocks, calledinvariant. A state(ℓ, v)
has adiscrete transition, labelede, to (ℓ′, v′) if v satisfies a
constraint, calledguard, associated toe, and v′ is obtained
from v by resetting certain clocks to0. The state(ℓ, v) has a
time transitionof durationt to (ℓ, v′) if v′ = v + t and for all
t′ (0 ≤ t′ ≤ t), v + t′ satisfies the invariant associated toℓ.

The composition of two timed automata is obtained by
synchronizing the actions labeling two (or more) transitions
on emission of a signalq and simultaneous reception(s) of the
same signal.

The network of timed automata may be analyzed through
model-checking techniques : tools UPPAAL [11] or KRONOS
[18] perform automatic verification of timed properties, ex-
pressed in TCTL; tool IMITATOR [3] extracts constraints on
timing parameters ensuring a correct functioning.

B. VHDL subset and Timing model

The VHDL programs we consider are Data Flow descrip-
tions, made of concurrent assignments representing combina-
torial blocks and processes representing sequential elements
(either latches, buffers or memory points). Each concurrent
statement is responsible for the assignment of one signal,
representing the output of the corresponding combinatorial or
sequential block. The timing information are external to the
VHDL description : two timing intervals are assigned to each
block, representing the propagation of an edge from an input
to the output;δ↑ stands for the propagation of a rising edge
on the output andδ↓ for a falling one.

The timing part of the system is given in a external table
stating, for each output of a combinatorial or sequential block,
for each (valid) input configuration and input edge inducing
an output edge, the direction of the edge of the output signal

(either rising or falling), and the propagation delay between the
input and output edges. From this table, one can easily extract
intervals bounding the propagation delay of each signal’s edge.

C. Translation algorithm

The timed analysis of combinatorial circuits with timed
automata has been proposed by [14]. The generic gate model
proposed by these authors is the basis of our translation
method : a model for a combinatorial gate whose propagation
delays are enclosed into a unique timed interval, whose delay
is inertial, emulates the propagation of every transaction(in
the VHDL sense) along each signal. With this model, asyn-
chronous circuits composed of several gates are represented
as a product of timed automata, each transaction occurring
on a signal being propagated for the evaluation of subsequent
signals. We propose the following extensions and provide an
automated tool generating directly, from a VHDL description
and a set of propagation delays, an input description for several
model-checking tools, such as UPPAAL, HyTech, IMITATOR:
• Propagation of VHDL transactions is costly : each time
a signal is written (even if the value written is similar to
the current one), this induces the re-computation of values
to be written to subsequent signals. This extra-computation
increases the complexity of the region’s graph summing-up
the timed behaviors of the system, and it does not add useful
information for the functional properties we are interested in.
In our model,signal’s edgesare identified and propagated to
subsequent part of the circuits. Edge detection imposes theuse
of extra variables to memorize the value of the signalbefore
and after a writing action, however this simplifies further
analysis.
• The circuits we consider have been manually designed and
are tuned for timing performance. In this context, a unique
inertial delay bound into one interval is a too coarse approx-
imation. We adopt theinertial and bi-bounded delay model:
the delay distribution is not uniform but concentrates around
two picks: one corresponding to thefalling edgeand the other
one to therising edge. Management of two delays induces a
greater complexity of each timed automaton, but restricts the
non-determinism of the model since actions’ firings are more
constrained (moreover, for a given signal, the two intervals are
generally thin but distant from each other).
• We consider combinatorialand sequential blocks. In previ-
ous works ([14],[7]), sequential elements are not considered
or are supposed to be described at gate level ([9]) while
in this paper we represent its macroscopical behavior. The
transient behaviors relating to stabilization phases of sequential
elements are abstracted into the delay propagation. The correct
estimation of these stabilization delays is the most difficult part
of timing extraction as it concerns conflicting gates.
The translation algorithm we propose is described below :

1) Identify and create global variables : for each VHDL
block (either combinatorial or sequential), assigning a
signals, create :

• clock xs,
• boolean variablevs,



• synchronization labelss↑ ands↓,
• delays boundsl↑s , u↑

s, l↓s ,u↓
s.

2) For each concurrent assignment, assigning signals,
createTA(s) (cf. subsection III-C.1).

3) For each sequential process, assigning signals, create
NTA(s) (cf. subsection III-C.2).

4) Instantiate delay parameters (cf. subsection III-C.3).
5) Insert a timed automaton for the environment of the

circuit.
We obtain a network of timed automata whose timed traces

emulate the signal edges propagations along the combinatorial
and sequential elements of the circuit. The set of timed
traces is complete : each potential execution of the circuitis
represented by a timed trace in the timed automata network.
The set of timed trace over-approximates the set of executions
of the circuit : due to interval approximation, some timed
traces may not correspond to real executions in the circuit.
This case is reduced by using two intervals, distinguishing
rising and falling edges, and being very thin.

1) Representation of a combinatorial block:Each combi-
natorial block, assigning a signals is represented by a unique
timed automatonTA(s), composed of three states :stable(s),
rising(s)andfalling(s). In stable(s), the value ofs conforms to
the input configuration (even if this latest changes). Inrising(s)
(resp.falling(s)), a new input configuration will induce a rising
(resp. falling) edge ons, after a delayδ↑ in-between two
boundsl↑s and u↑

s (resp. δ↓ in-between two boundsl↓s and
u↓

s). Transitions betweenrising(s) andfalling(s) may occur in
case of two successive edges on input configurations inducing
two opposite edges on the output, occurring before the output
for the first edge has stabilized. With this representation,only
significant edges are computed and passed through subsequent
gates, inducing the minimal computations. Fig. 2 presents the
timed automaton associated with the combinatorial statement
assigning signals1 <= i1 and i2. For a sake of readabil-
ity, synchronization labels have been omitted and transitions
are designed by letters. In the Figure, transition labeled with
< b > (resp < b′ >) refers to the occurrence of an edge
on one signal amongi1, i2, inducing a rising (resp falling)
edge ons1 when delayδ↑s1 (resp.δ↓s1) will have elapsed; the
combinatorial block enters into a computation state, waiting
for delay propagation elapsing (represented as state invariant
: xs1

≤ u
↑
s1). Transition labeled with< a > (resp.< a′ >)

refers to the production of the rising (resp. falling) edge of
s1 once the propagation delay has elapsed (represented as
transition timed guard :xs1

≥ l
↑
s1). Transition< c > (resp.

< c′ >) refers to the occurrence of an edge on an input signal,
while the gate is into a computation state, if the input edge
induces a value change of the output. Other transitions refer
to the occurrence of an input edge which does not induce a
change on the outputs1.

2) Representation of a sequential block:A sequential block
can be viewed as a collection ofn exclusive guarded com-
mands, whose variables are input and internal signals in a
set e, and assigning a value to signals. For i ∈ [1..n],
guarded commandi is modeled by :[gi] : s ← fs

i (e), where

< a >

< a′ >

< b >

< b′ >
< c >

< c′ >
stable(s)

rising(s)

falling(s)

xs1 ≤ u
↑
s1

xs1 ≤ u
↓
s1

[xs1 ≥ l
↑
s1

]

[xs1 ≥ l
↓

s1
]

Fig. 2. Timed automaton associated with s1 assignment.

fs
i (e) represents the boolean function (whose support ise)

assigned tos. All guarded commands are evaluated as soon
as an edge on an element ofe occurs : the guard evaluation
is instantaneous, and if one is selected, say theith one, the
corresponding command is performed. This latest consists in
evaluatingfs

i (e), and if its evaluation differs from the current
value ofs (stored in variablevs), an edge (either risings↑ or
falling s↓) will be produced.

This computation is represented by a product ofn + 1
automata connected withn auxiliary variablesgs

i representing
the truth value of the corresponding guard. The system is
composed ofn automataTA(gs

i ), evaluation each guardgs
i ,

plus one automatonTA(s) assignings.
The instantaneous evaluation of each guardgs

i is represented
by a distinct automatonTA(gs

i ), each of them being activated
on each edge on each signal ine. It is composed of two states,
corresponding to the instantaneous value of the guard, either
true or false. The guard is evaluated each time an edge occurs
on one of its variable. Evaluation transitions are urgent (they
do not let time elapse). For a given evaluation, among these
n automata, only one may assign its variablegs

i to true.
The assignment of signals is represented by another au-

tomaton TA(s) (represented on Fig. 3; for readability, all
synchronization labels and transition guards have been omit-
ted). Two states correspond to a stable output : statestable(s)
corresponds to a case when at least one guard condition
evaluates to true (the register is open and any change on its
input may induce a delayed writing on its output), while state
close(s)corresponds to the case when no condition evaluates to
true and the output is locked. As for combinatorial blocks, all
assignments producing a rising edge are merged into a unique
staterising(s), while all assignments producing a falling edge
are merged into statefalling(s). This merge reduces the size of
the automaton, but induces the merging of the timing intervals
associated with the assignments. The upper bounds of timing
interval are represented as state invariants, and one has totake
the maximum of upper bounds ofδ↑s(i) as the common state
invariants forrising(s) (and the same for statefalling(s)). In
Fig. 3, transitions< a > to < c′ > have a similar meaning as
on Fig. 2, when the process corresponds to an open register
(the output signal is stable and exactly one guard is true).



< a >

< a′ >

< b >

< b′ >
< c >

< c′ >

< d >

< d′ >

< e >
< e′ >

< f > < f ′ >

stable(s)

rising(s)

falling(s)

close(s)

xs ≤ u
↑
s

xs ≤ u
↓
s

Fig. 3. Timed automata associated withs sequential assignment.

Transitions< e >, < e′ >, < f ′ > refer to the production of
output when the process was closed (no guard was true) and an
input edge opened it (one guard, saygs

i becomes true). In this
case, an evaluation of the output value is necessary: variable
vs will be assigned to the evaluation offs

i after a delayδ↑s
(or δ↓s , depending on whetherfs

i evaluates to 1 or 0); if this
assignment changes the value ofvs, an edge (eithers↑ or s↓)
will be produced and will propagate as a triggering event for
subsequent automata. Transitions< d >, < d′ >, < f > refer
to the closing of the register.

3) Addition of timing constraints:In this model, for each
internal or output signals, delaysl↑s , u

↑
s, l↓s and u↓

s may be
either set to real values or left as parameters, depending onthe
subsequent analysis to be performed. Each timed automaton
is deterministic in actions but not in delays (except ifl↑s = u↑

s,
and l↓s = u↓

s, which is a common approximation). However,
even in this case, the overall system may not be deterministic,
due to the simultaneous occurrence of concurrent signals.

IV. T IMED VERIFICATION OF COMBINATORIAL AND

SEQUENTIAL CIRCUITS

In this section, we present the timed verification we per-
formed on a set of digital circuits. Some of them are described
in the asynchronous design litterature and in these cases the
functionality and timing were given by means of a logical
circuit whose gates are associated with delays. Others circuits
are transistor level descriptions of commercial products devel-
oped by STMicrolectronics: we had to abstract their functional
behavior and extract the propagation delays of each abstracted
block, as described in Sec. II.

Table I presents some of the circuits we analyzed, a more
complete description can be found in [5]. The three first
ones are combinatorial circuits while the two last ones are
sequential. The columns of the table contain from left to
right: circuit’s name and reference paper (if any), number
of combinatorial statements and process in the VHDL code,
number of timed automata, clocks, variables, location and
transitions in the zone graph, translation time from VHDL
to UPPAAL, model-checking time with UPPAAL.

For each circuit, timed properties are expressed in timed
logic TCTL and checked using model-checker UPPAAL.
Timed properties refer to the instant of occurrence of certain
signal’s edges, considering other signals’ edges fulfill some
assumptions. For instance, for circuit spsmall-3x2, one timed
property checked is :

AG((t ≥ 0 ∧ t < 270⇒ q = 0) ∧ (t > 278⇒ q = 1))

This property states that for any execution trace of the model
(i.e. for any propagation delay occurring between the definite
bounds for each gate), the output signalq will eventually rise
from 0 to 1 between270 and278 time units and remains stable
afterwards. The verification of this property gives a guaranteed
interval for the response time of the circuit, assuming the input
signals conform to the timing constraints induced by the envi-
ronment automaton. This property was checked with various
environments, fixing the clock shape and period, and the setup
timings of input signals. In Env1, the setup timings are set to a
fixed value(tsetupD

= 108, tsetupA
= 58, tsetupW

= 48). The
property is satisfied within 10 mn and requires 100 MB of
memory. In Env2, the setup timings are free within bounded
intervals (tsetupD

∈ [81, 108], tsetupA
∈ [33, 58], tsetupW

∈

[32, 48]). The property is also satisfied within 25 mn and
requires 800 MB of memory. For this circuit, functional
abstraction was performed in 14 s and timing extraction in
about 1 hour. These results show the complementarity of timed
model checking results versus electrical simulation: due to
the dense time model and delays modeled within bounded
intervals, we are able to compute safe uncertainty margins for
input signals and find the largest timed bounds of some critical
gates of the circuits.

In our experiments, once the functional and timed model
is set, the translation into timed automata is straightforward.
The distinction of propagation delays for rising and falling
edges of each signal, and the accurate modeling of edge
generation induce a complexity in automata but drastically
restricts the non-determinism of the whole system and prunes
extra non necessary computation. This explains the velocity
of the model-checking analysis. As a comparison, previous
attempts of timed model-checking of circuits were successful
for smaller circuits: in [7], the authors analyze asynchronous
circuits up to 30 gates. They propose a significant improve-
ment for combinatorial circuits restricted to a unique edge
on each input signal in [16], and analyze circuits up to 90
gates. Other authors ([9] propose to model sequential circuits
at gate level, and perform parametric analysis to extract critical
paths symbolically. This approach gives very rich results but is
limited to very small portions of circuits (15 gates). With our
modeling choices, we are able to analyze sequential circuits
containing up to 100 combinatorial gates and 15 latches,
supporting an environment with several edges on each input
signal. This approach is helpful to analyze limited portions of
circuit and is a complement to electrical simulation.



circuit’s name #comb / process #TA #clocks #var VHDL2TA time #locations #transitions MC time
D flip-flop [9] [4] 5 / 0 6 5 7 0.1 10 10 < 0.1s

half [7] 7 / 0 9 7 9 0.1s 33 53 < 0.1s
sbuf-send-ctl [6] 14 / 0 17 14 17 0.1s 80 108 < 0.2s

spsmall-blueb-lsv2 [17] 25 / 6 32 31 35 0.3s 248 338 < 0.3s
spsmall-3x2 62 / 30 117 93 117 1mn - - 10mn

TABLE I

FUNCTIONAL AND T IMING ANALYSIS OF SEVERAL CIRCUITS.

V. CONCLUSION

We presented a methodology to perform accurate timing
analysis of logical-gate level description of circuits. Itcom-
bines timing evaluation of each gate and then timed and
functional analysis of the whole set of gates. This analysisis
achieved by translating VHDL description into timed automata
formalism. We developed an efficient algorithm to generate a
network of timed automata representing the functional and
timed behavior of the circuit. The model obtained is rather
efficient since we may analyze circuits containing one hundred
gates. Three factors explain this good result :

• accurate timing extraction : this is mainly due to the fact
that the delays associated to each block may be extracted
in a independent way from the other gates. In order to
refine some critical interval bounds, signal correlation
analysis has been performed.

• timing non-determinism is restricted : associating two
distinct intervals for the propagation of each signal edge
is currently used in the electronic design community, but
was not adopted in the timed model-checking analysis
([14]). Even if it doubles the number of delays to be
considered, it highly restricts the timing non-determinism
which is a critical factor to analyze medium sized circuits.

• propagation of real edge (value change) instead of ”poten-
tial change” (value writing) : this reduces the evaluation
of downstream automata, hence reduces the size of the
reachability graph to be analyzed. The counterpart of this
is the introduction of new variables to determine whether
a computation will induce a change on a signal or not.

With these choices, the timed model proposed is quite com-
plex, but grows linearly with the size of the VHDL description,
nevertheless the reachability graph it induces is as small as
possible. Thanks to our modeling choices, experimentations
have shown that small-sized circuits may be analyzed with
efficient timed automata model-checkers such as UPPAAL and
results are complementary with those produced by electrical
simulation or static analysis tools.

This approach offers a new opportunity to designers to
automatically analyze functionality and timing of their circuits
by bridging the gap between circuits’designers models written
in VHDL and efficient timed model-checking tools. It can
also be used to speed up the accurate timed simulation of
complex circuits moving from transistor level descriptionand
electrical simulation to register transfer level and simulation.
The transistor level model of each gate is necessary to set
appropriate delays, but once the delay of each gate is ex-
tracted, the simulation of the whole system is performed at

logical level. In this approach, the most difficult task remains
the determination of accurate timings, particularly thoseof
sequential elements involving conflicting gates. More workhas
to be performed to enhance this step.

REFERENCES

[1] John Wiley A. Vladimirescu and Sons. The Spice Book. 1994.
[2] Rajeev Alur and David Dill. A Theory of Timed Automata.Theor.

Comp. Sci., 126(2):183–235, 1994.
[3] É. André. Imitator: A tool for synthesizing constraints ontiming bounds

of timed automata. In Martin Leucker and Carroll Morgan (eds.),
ICTAC’09, LNCS, 2009.

[4] É. André, T. Chatain, E. Encrenaz, and L. Fribourg. An inverse method
for parametric timed automata. InInt. Work. on Reachability Problems
(RP’08). Elsevier, 2008.

[5] A. Bara. VHDL2TA: A Tool for Automatic Translation of VHDL Pro-
grams plus Timings into Timed Automata.ANR-VALMEM Technical Re-
port, 2009, http://www.lsv.ens-cachan.fr/ encrenaz/valmem/vhdl2hytech.

[6] Peter A. Beerel, Cheng-Ta Hsieh, and Suhrid A. Wadekar. Estimation of
energy consumption in speed-independent control circuits. IEEE Trans.
on CAD of Integrated Circuits and Systems, 15(6):672–680, 1996.

[7] M. Bozga, H. Jianmin, O. Maler, and S. Yovine. Verification of
asynchronous circuits using timed automata. InTPTS’02, ENTCS,
volume 65, 2002.

[8] R. E. Bryant. Boolean analysis of mos circuits. InIEEE Transactions
on Computer Aided Design, 1987.

[9] R. Clarisó and J. Cortadella. Verification of timed circuits with symbolic
delays. InProc. ASP-DAC, pages 628–633, 2004.

[10] K. Dioury, A. Greiner, and M-M Louerat. Accurate statictiming analysis
for deep submicronic CMOS circuits. InIFIP International Conference
on Very Large Scale Integration (VLSI’1997), pages 439–450, Gramado,
Brasil, August 1997.

[11] K. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell. Interna-
tional Journal on Software Tools for Technology Transfer, 1:134–152,
1997.

[12] A. Lester, P. Bazargan-Sabet, and Greiner A. Yagle, a Second generation
Functional Abstractor for CMOS VLSI circuits. In10th International
Conference on Microelectronics, pages 265–268, Monastir, Tunisia,
December 1998.

[13] J. Lin, T. Liu, and W. Shen. A cell-based power estimation in CMOS
combinational circuits. InProc. IEEE/ACM Int. Conf. on Computer-
Aided Design, pages 304–309, 1994.

[14] O. Maler and A. Pnueli. Timing analysis of asynchronouscircuits
using timed automata. InInt. conf. on Correct Hardware Design and
Verification Methods (CHARME), volume 987, pages 189–205. Springer,
1995.

[15] W. Nebel. Automatic extraction of rt-level description from integrated
circuit layout data. InDoctoral Thesis of Kaiserlauten University, 1986.

[16] R. Ben Salah, M. Bozga, and O. Maler. On Timing Analysis of
Combinatorial Circuits. InFORMAT’03, LNCS, pages 204–219, 2003.

[17] W. Xu. Timing analysis of SPSMALL.Internal report LSV, June 2006.
[18] S. Yovine. Kronos: A Verification Tool for Real-Time Systems.

International Journal on Software Tools for Technology Transfer, 1:123–
134, 1997.


