
On Commutativity Based Edge Lean Search

Dragan Bošnački1, Edith Elkind2, Blaise Genest 3, and Doron Peled4

1 Department of Biomedical Engineering, Eindhoven University of Technology, P.O.
Box 513, NL-5600 MB, Eindhoven, The Netherlands

2Department of Computer Science, University of Liverpool
Liverpool L69 3BX, United Kingdom

3 IRISA/CNRS, Campus de Beaulieu, 35042 Rennes Cedex, France
4Department of Computer Science, Bar Ilan University, Israel

Abstract. Exploring a graph through search is one of the most basic
building blocks of various applications. In a setting with a huge state
space, such as in testing and verification, optimizing the search may be
crucial. We consider the problem of visiting all states in a graph where
edges are generated by actions and the (reachable) states are not known
in advance. Some of the actions may commute, i.e., they result in the
same state for every order in which they are taken (this is the case when
the actions are performed independently by different processes). We show
how to use commutativity to achieve full coverage of the states traversing
considerably fewer edges.

1 Introduction

In many applications one has to explore a huge state space using limited resources
(such as time and memory). Such applications include software and hardware
testing and verification [3], multiagent systems, games (e.g., for the purpose of
analyzing economic systems), etc. In such cases, it is obviously important to
optimize the search, traversing only the necessary states and edges.

In this paper, we consider the problem of searching a large state space, where
transitions between states correspond to a finite number of actions. We do not
assume that the entire system is given to us as an input. Rather, we are given
an initial state, and a method to generate states from one another. More specif-
ically, for each state, there can be one or more actions available from this state.
Executing an available action leads to another state. Also, we are given a fixed
independence relation on actions: if two actions are independent, then executing
them in any order from a given state leads to the same state. It is easy to model
many of the problems in the above-mentioned application areas in this frame-
work. We provide specific examples later in the paper. Traversing an edge and
checking whether it leads to a new state has a cost. Hence, we want to predict if
an edge is redundant (i.e., leads to a state that we have already visited or that
we will necessarily visit in the future) without actually exploring it. Exploring
fewer edges may also reduce the size of the search stack, and in particular re-
duce the memory consumption. Intuitively, the independence relation between

actions should be useful here: if two sequences of actions lead to the same state,
it suffices to explore one of them. Of course, it will defy our goal to use a lot
of overhead, both in terms of time spent calculating the subset of edges that
need to be explored, and in term of additional space required for supporting the
search per each state.

We provide a simple solution for commutativity-based edge-lean search (CBEL).
Our algorithm selects a total order on actions, extends it to paths (i.e., se-
quences of actions) in a natural way, and only explores paths that cannot be
made smaller with respect to this order by permuting two adjacent independent
actions. The proof that combining this simple principle with depth-first search
ensures visiting all states turns out to be quite non-trivial (see Section 3). An-
other approach, which is inspired by trace theory [12, 13], is to only consider
paths that correspond to sequences in trace normal form (TNF) (defined later
in the paper). This method provides a more powerful reduction than the one
described above, as it only explores one sequence in each trace. In Section 4, we
investigate this idea in more detail, describing an efficient data structure (called
summary) that supports this search technique. We prove that the TNF-based
algorithm is guaranteed to visit all states as long as the underlying state system
contains no directed cycles. Unfortunately, if the state system is not loop-free,
this algorithm may fail to reach some of the states: we provide an example in
Section 4. While this limits the scope of applicability of this algorithm, many
state systems, especially the ones that arise from multi-agent and bioinformatics
applications are naturally acyclic (for examples, see Section 6). Whenever this
is the case, the TNF-based algorithm should be preferred over the algorithm of
Section 3.

A related approach is the family of partial order reductions [14, 6, 15]. As op-
posed to our edge-lean algorithm, in general the methods known as ample sets,
persistent sets, or stubborn sets, respectively, do not preserve the property of
visiting all the states, but guarantee to generate a reduced state space that pre-
serves the property that one would like to check. Our algorithms are most closely
related to the sleep set approach of [6], in particular the non-state-splitting sleep
set algorithms. In Section 5, we show that our TNF-based algorithm generates,
in fact, exactly the same reduced graph as the very first version of the sleep set
algorithm proposed in [7] (when edges are explored according to a fixed order
between actions). Our counterexample in Section 4, shows that in the presence
of cycles, not all the states are explored. This counterexample can then be seen
as an explanation why in the presence of cycles, all existing sleep set algorithms
have to use additional techniques to visit all states. In particular, the one in [8]
generates and checks back-edges, discards them when redundant, thus pays the
cost of checking some of the redundant edges. A fix suggested in [6, 14] allows
spliting nodes into several copies, which may increase the number of effective
states. Surprisingly, our edge lean algorithm achieves a full coverage of the states
without any such proviso, and even in the presence of cycles.

An obvious application area for this technique is model checking and verifi-
cation. However, our methods can also be applied in other domains. To illustrate

2

this, in Section 6 we describe examples from areas as diverse as voting theory, cel-
lular automata theory, data mining and bioinformatics where one can use these
techniques. We hope that our search methods will find applications in other
fields as well. In Section 7, we provide the results of several experiments that
compare our algorithms with classical depth-first search used in SPIN [10]. Our
experiments show that for a number of natural problems, our methods provide
a dramatic reduction in the number of edges explored and the stack size.

2 Preliminaries

A system is a tuple A = 〈S, s0, Σ, T 〉 such that

– S is a finite set of states.

– s0 ∈ S is an initial state.

– Σ is the finite alphabet of actions.

– T ⊆ S × Σ × S is a labeled transition relation. We write s
a

−→ s′ when
(s, a, s′) ∈ T .

– A symmetric and irreflexive relation I ⊆ Σ × Σ on letters, called the inde-
pendence relation. We require that independent transitions a I b satisfy the
following diamond condition for every state s:

If s
a

−→ q
b

−→ r then there exists q′ ∈ S such that s
b

−→ q′
a

−→ r. In
this case, we say that the system has the diamond property.

Note that we do not require the other common diamond condition:

If s
a

−→ q and s
b

−→ q′ then there exists r ∈ S such that s
a

−→ q
b

−→
r.

An action a is enabled from a state s ∈ S if there exists some state s′ ∈ S

such that s
a

−→ s′. We say that a path ρ = s0
a1−→ · · ·

an−→ sn is loop-free or
simple if ui 6= uj for all i 6= j. Its labeling is ℓ(ρ) = a1 · · · an.

Definition 1. Let σ, ρ ∈ Σ∗. Define σ
1
≡ρ iff σ = uabv and ρ = ubav, where

u, v ∈ Σ∗, and a I b. Let σ ≡ ρ be the transitive closure of the relation
1
≡. This

relation is often called trace equivalence [12].

That is, ρ is obtained from σ (or vice versa) by commuting the order of an
adjacent pair of letters. For example, for Σ = {a, b} and I = {(a, b), (b, a)} we

have abbab
1
≡ababb and abbab ≡ bbbaa. Notice that if the system has the diamond

property and u ≡ v, then s
u

−→ r iff s
v

−→ r.

Let ≪ be a total order on the alphabet Σ. We call it the alphabetic order.
We extend ≪ in the standard lexicographic way to words, i.e., v ≪ vu and
vau ≪ vbw for v, u , w ∈ Σ∗, a, b ∈ Σ and a ≪ b.

All the search algorithms to be presented are based on depth-first search
(DFS), which provides a space complexity advantage over breadth-first search:

3

Dfs(s0);

proc Dfs(q);

local q’;

hash(q);

forall q
a

−→ q′ do

if q′ not hashed then Dfs(q’);

end Dfs;

3 An edge lean algorithm for complete state coverage

A key idea to reduce the number of explored edges is to make use of the diamond
property, defined in the previous section.

Definition 2. Let w ∈ Σ∗. Denote by w̃ the least word under the relation ≪
equivalent to w. If w = w̃, then we say that w is in trace normal form (TNF) [13].

As w̃ ≡ w, any state that can be reached by a path labeled with w can
also be reached by a path labeled with w̃. Therefore, it is tempting to limit
our attention to paths labeled with words in TNF, as such paths do reach all
reachable states. However, one has to use caution when applying this approach
within the depth-first search framework (see Section 4). The main reason for this
is that all paths explored during depth-first search are necessarily acyclic. Hence,
by using this method, we only consider paths that are both acyclic and labeled
with words in TNF. On its own, neither of these restrictions prevents us from
reaching all states. Unfortunately, it turns out that combining them may result in
leaving some states unexplored; we provide an example in Section 4. Therefore,
for general state systems we have to settle for a less ambitious reduction. In what
follows, we define a weaker relation on strings in Σ∗, and prove that it suffices
to explore paths whose labeling is minimum with respect to this relation.

Set ubav ֌1 uabv if and only if a I b and a ≪ b and let ֌ be the transitive
closure of ֌1. We say that a word w ∈ Σ∗ is irreducible if there exists no
w′ 6= w such that w ֌ w′. Intuitively, this means that w cannot be reduced,
i.e., transformed into a smaller word with respect to ֌, by a local fix (a single
permutation of adjacent independent letters). We call a path ρ irreducible if its
labeling ℓ(ρ) is an irreducible word. Observe that a prefix of an irreducible path
is also irreducible. Notice that if w is in TNF, then it is irreducible. The converse
does not necessarily hold.

Our algorithm EdgeLeanDfs explores all irreducible paths in depth-first man-
ner. For this, it suffices to remember the last letter a seen along the current path,
and not to extend it with letter b whenever a I b and b ≪ a. This algorithm is
given below:

4

EdgeLeanDfs(s0,ǫ);

proc EdgeLeanDfs(q,prev);

local q’;

hash(q);

forall q
a

−→ q′ such that prev = ǫ or ¬(aIprev) or prev ≪ a do

begin

if q′ not hashed then EdgeLeanDfs(q’, a);

end EdgeLeanDfs;

Let first cbel(s) be the first path by which EdgeLeanDfs(s0, ǫ) reaches the
state s; if EdgeLeanDfs(s0, ǫ) does not reach s, set first cbel(s)=⊥.

Theorem 1. For any s ∈ A, we have first cbel(s) 6= ⊥, i.e., our algorithm ex-
plores all states. This implies that EdgeLeanDfs(s0, ǫ) is correct.

Proof. To prove theorem 1, we fix a state s, and show that EdgeLeanDfs(s0, ǫ)
reaches this state. To do so, we start with an arbitrary simple irreducible path
in the state graph that reaches s (we show that such path always exists) and
repeatedly apply to it a transformation T , defined below. This transformation
produces another simple irreducible path that also leads to s. We show that
for any ρ for which T (ρ) is defined, an application of T results in a path that
is smaller than ρ with respect to a certain well-founded ordering, defined later.
Therefore, after a finite number of iterations, we obtain a simple irreducible path
ρ such that T (ρ) is not defined. We then prove that any such ρ is a path taken
by EdgeLeanDfs(s0, ǫ), i.e., s is reached by our algorithm. The details follow.

For any simple path ρ and any state t on this path, we denote by ρt the
prefix of ρ that reaches t; in particular, ρs is a simple path that reaches s. We
will now show that we can choose ρs so that it is irreducible.

Claim 1 For any path ρs, there exists a path ρ′s that is simple and irreducible.

Proof. We iteratively (1) delete loops and (2) rearrange the labels to obtain
an irreducible path. Each application of (1) strictly decreases the length of the
path, while (2) does not change its length. The path obtained also leads to s.
We obtain a simple irreducible path after a finite number of iterations.

Given a simple path ρ that reaches s, all states on ρ can be classified into
three categories with respect to ρ: we say that a state t is red if first cbel(t)= ρt,
blue if first cbel(t)6= ⊥, but first cbel(t)6= ρt, and white if first cbel(t)= ⊥. This
classification depends on the path ρ: a state can be red with respect to one
path but blue with respect to a different path. It turns out that for a simple
irreducible path, not all sequences of state colors are possible.

Lemma 1. Suppose that ρs is loop-free and irreducible. Then if t is the last red
state along ρs, all states that precede t on ρs are also red. Moreover, either t is
the last state on ρs, i.e., t = s, or the state t′ that follows t on ρs is blue.

5

Proof. The first statement of the lemma follows from the definition of a red state
and from the use of Depth first search. To prove the second statement, assume
for the sake of contradiction that t′ is white (t′ cannot be red as t is the last
red state on ρs). The path ρt′ is a prefix of ρs, so it is simple and irreducible.
Hence, EdgeLeanDfs(s0, ǫ) must explore the transition that leads from t to t′.
Therefore, t′ cannot be white.

We define a transformation T that can be applied to any simple irreducible
path ρ = ρs that contains a blue state; its output is another simple irreducible
path that reaches the same state s. Recall that ℓ(π) denotes the labeling of a
path π. The transformation T consists of the following steps (w and v appear
only for a later reference in the proof):

(1) Let ρt be the shortest prefix of ρ with t blue and σ with ρ = ρt σ. Modify
ρ by replacing ρt with first cbel(t), i.e., set ρ=first cbel(t).σ. Set w = y =
ℓ(first cbel(t)), v = z = ℓ(σ) and x = y.z = ℓ(ρ).

(2) Eliminate all loops from ρ. Update x, y, and z by deleting the substrings
that correspond to these loops.

(3) Replace ρ with an equivalent irreducible path as follows.
(3a) Replace z with an equivalent irreducible word.
(3b) Let a be the last letter of y, and let b be the first letter of z. If a ≫ b

and a I b, move a from y to z and push it as far to the right as possible
within z.

(3c) Repeat Step (3b) until the last letter a of y cannot be moved to z, i.e.,
a ≪ b or a and b are not independent.

(3d) Set x = yz, and let ρ be a path reaching s with ℓ(ρ) = x.
(4) Repeat (2) and (3) until ρ is simple and irreducible.

By the argument in the proof of Claim 1, we only need to repeat Steps (2)
and (3) a finite number of times, so the computation of T terminates after a
finite number of steps. Observe that if s is red with respect to ρs, then T (ρs) is
not defined. On the other hand, consider a simple irreducible path ρs such that
s is not red with respect to ρs. By Lemma 1, we can apply T to ρs. The output
of T (ρs) is loop-free and irreducible, so if s is not red with respect to T (ρs), we
can apply T to T (ρs). We will now show that after a finite number of iterations
n, we obtain a path T n(ρs), which consists of red states only.

To continue, we need the following definition.

Definition 3. For a word v ∈ Σ∗, let ♯a(v) be the number of occurrences of the
letter a in v. We write v <♯ w if there exists a letter a such that for all b ≪ a,
♯b(v) = ♯b(w) and ♯a(v) < ♯a(w).

Claim 2 The relation <♯ is a well-founded (partial) order, i.e., there does not
exist an infinite sequence u1, u2, . . . , ui ∈ Σ∗ such that u1 >♯ u2 >♯

Consider a simple irreducible path ρ = ρs. Suppose that both ρ and T (ρ)
contain blue states. To complete the proof of Theorem 1, it suffices to prove the
following lemma.

6

Lemma 2. Let ρ = ρtσ, where t is the first blue state on ρ, and let T (ρ) = ρ′t′σ
′,

where t′ is the first blue state on T (ρ). Let v = ℓ(σ), v′ = ℓ(σ′). Then v >♯ v′.

Before we prove the lemma, let us show that it implies Theorem 1. Indeed,
by Claim 2, there does not exist an infinite decreasing sequence of words with
respect to <♯. The strings v, v′ satisfy v′ <♯ v, and are well-defined as long as
both ρ and T (ρ) contain blue states. Hence, for some finite value of n, T n(ρ)
contains no blue states, it is simple and irreducible. Therefore, by Lemma 1 we
obtain a path of our algorithm that reaches s. We now prove Lemma 2.

Proof. We use the notation introduced in the description of T : we have w =
ℓ(first cbel(t)), v = ℓ(σ), and x = wv = ℓ(ρ) after ρt was replaced by first cbel(t).

In the rest of the proof, we abuse notation by using the word ‘letter’ to refer
both to an element of Σ and an occurrence of this element in a word. The specific
meaning will be clear from the context. In particular, we will assign colors to
occurrences of the elements of Σ rather than the elements itself, whereas when
we write a ≪ b, we refer to the respective elements of Σ.

Let us color all the letters in the word wv so that all letters in w are yellow
and all letters in v are green. By construction at any point in time all letters in y

are yellow, and therefore all letters pushed into z during Step (3) are yellow. We
construct a directed acyclic graph (DAG) whose set of nodes includes all yellow
occurrences of letters in z as well as some of the green occurrences of letters.
Namely, if a yellow letter a gets pushed into z when the first letter of z is b, there
is an edge from this occurrence of a to this occurrence of b. Also, if a (yellow
or green) letter a that is currently the first letter of z gets transposed with its
right-hand side neighbor b (by (3a)), there is an edge from this occurrence of a

to this occurrence of b. Observe that in both cases if there is an edge from an
occurrence of a to an occurrence of b, then we have b ≪ a, so our graph contains
no directed cycles. We do not delete a node from this graph even if the respective
occurrence is deleted from x by (2).

Claim 3 Each yellow letter pushed into z has an outgoing edge. Moreover, if a
letter has incoming edges, but no outgoing edges, either it has been eliminated
from x, or it is the first letter of z after the execution of T is completed.

Proof. Each yellow letter acquires an outgoing edge as it is moved into z. Now,
consider a letter that has incoming edges. It acquired them either when it was the
first letter of z and yellow letters were pushed past it, or when it was transposed
with its left-hand side neighbor and became the first letter of z. In both cases, it
was the first letter of z at some point in time. If it remains in that position till
the end of the execution of T , we are done. Now, suppose that it stopped being
the first letter of z. Then either it was deleted during loop elimination phase, in
which case we are done, or it was transposed with its right-hand side neighbor,
in which case it acquired an outgoing edge. [Claim 3]

Let G be the set of nodes of our DAG that have incoming edges, but no
outgoing edges. By Claim 3 none of the letters in G is yellow, so all of them are

7

green. Moreover, each letter in G either has been eliminated from x or is the
first letter of z after the end of the execution of T .

Consider the string x = yz obtained after the end of the execution of T .
This string corresponds to ρ′ = T (ρ). Recall that w corresponds to first cbel(t),
which consists of red states only, and y is a prefix of w. Hence, the prefix of ρ′

that corresponds to y reaches a red state. Therefore, to reach a blue state along
ρ′, we need to progress over at least one letter of z, or, equivalently, v′ is a strict
suffix of z, that is, v′ does not include the first letter of z. Using claim 3, we
conclude that v′ does not contain any of the letters in G.

Let a be the minimal (for ≪) letter of G. It is contained in v but not in v′.
On the other hand, each letter c that is contained in v′, but not in v, is a yellow
letter that appears in the DAG, that is there is a path of the DAG leading from
c to some b ∈ G. By construction of the graph, the existence of a path from c to
b implies c ≫ b, and hence c ≫ a. Hence, for all b in v′ with b ≪ a or b = a, b is
green, hence ♯b(v

′) ≤ ♯b(v), and a ∈ G is in v but not in v′, hence ♯a(v′) < ♯a(v),
that is v′ <♯ v. [Lemma 2,Theorem 1]

4 An efficient reduction for cycle free state spaces

It can be argued that the reduction of Section 3 is not optimal: let a ≪ b ≪ c,
a I b, b I c and ¬(a I c). Let x = cab and y = bca. Then we have x ≡ y, i.e., the
states reached after x and y are the same. However, both x and y are irreducible,
since a ≪ b and ¬(a I c). Therefore, the algorithm of Section 3 will explore both
of the paths labeled by x and y.

In this section, we describe an algorithm TNF Dfs(s0) that only explores paths
labeled with words in trace normal form. Our algorithm provides a significant
reduction in the size of stack needed, both compared to DFS and EdgeLeanDfs

(see Section 7), while keeping time and space overhead small. For acyclic state
spaces, TNF Dfs(s0) explores all states. However, as hinted in Section 3, it may
not be the case in general. In the end of this section, we provide an example
in which some of the states are not reached. It is possible to overcome this
limitation by revisiting a state along a loop (as with some sleep set algorithms
[6]), but then most of the gains would be lost.

The algorithm TNF Dfs(s0) is based on exploring only paths that correspond
to some normal form of Mazurkiewicz traces [12]. Denote by α(σ) the set of
letters occurring in σ.

Definition 4. A summary of a string σ is the total order ≺σ on the letters from
α(σ) such that a ≺σ b iff the last occurrence of a in σ precedes the last occurrence
of b in σ. That is, σ = vaubw, where v ∈ Σ∗, u ∈ (Σ \ {a})∗, w ∈ (Σ \ {a, b})∗.

Our reduction will be based on generating paths that are in TNF.

Lemma 3. Let σ ∈ Σ∗ be in TNF, and a ∈ Σ. Then σa is not in TNF exactly
when we can decompose σ = vu, such that (i) vau ≡ vua and (ii) vau ≪ vu.

8

Proof. If the two conditions (i) and (ii) hold, then obviously vua cannot be
in TNF since it is not minimal under the alphabetic order among sequences
equivalent to it.

Conversely, let ρ be the minimal string such that ρ ≡ σa. Denote by first(v)
the first letter of a nonempty string v. Let v be the maximal common prefix of
ρ and σ (and thus also of σa). Let u, v be the respective suffixes of σ and ρ, i.e.,
σ = vu and ρ = vw. We will now prove that the decomposition σ = vu satisfies
conditions (i) and (ii). Consider the following cases:

1. w starts with an a.
(a) u does not contain an a. Then au ≡ ua, satisfying (i).
(b) u contains a. Write u = u1au2, where u1 contains no a’s. Then u =

u1au2 ≡ au1u2. Since ρ = vw ≪ vua, we have that a = first(w) ≪
first(u1) = first(u). Thus, vau1u2 ≪ vu1au2 = vu, a contradiction to
the fact that σ is in TNF.

2. w does not start with an a.
Write w = w1aw2, where w2 does not contain an a. Then, w = w1aw2 ≡
w1w2a ≡ ua and thus w1w2 ≡ u. Since vw ≪ vu, we have that first(w1) =
first(w) ≪ first(u). Thus, vw1w2 ≪ vu = σ and vw1w2 ≡ vu. This contra-
dicts the fact that σ is in TNF.

Intuitively, lemma 3 means that we can commute the last a in vua backwards
over u to obtain a string that is smaller in the alphabetic order than vu. The
following lemma shows how we can use a summary to decide whether σa is
in TNF. It implies that it suffices to consider the suffix of the summary that
commutes with a, and look among these letters for one that comes after a in the
alphabetic order. Since |σ| is usually quite larger than the size of the summary
(essentially |Σ|), this makes the generation of normal forms much more efficient.

Lemma 4. Let σ ∈ Σ∗ in TNF and a ∈ Σ. Then σa is not in TNF exactly
when there is b ∈ α(σ) such that a ≪ b and for each c such that b �σ c, aIc.

Proof. Suppose that σ is in TNF and σa is not. Let u be the shortest suffix of
σ according to the conditions of the lemma 3, i.e., σ = vu and vau ≡ vua. Let b

be the first letter of u. Then a ≪ b. Let C = α(u). We have aIc for each c ∈ C,
hence at least for each b �σ c.

Conversely, let b ∈ α(σ) a letter satisfying the conditions of the Lemma. Let
u be the shortest suffix of σ that begins with b. Since ≺σ is the summary of σ, it
follows that all the letters c ∈ α(u) satisfy b �σ c, and a I c. This means that (a)
and (b) from the previous lemma hold.

To perform a reduced depth-first search (DFS) that only considers strings in
TNF, we store the summary in a global array summary[1..n], where n = |Σ|.
The variable size stores the number of different letters in the current string σ.
We update the summary as we progress with the DFS, and recover the previous
value when backtracking, i.e., the value of the summary is calculated on the fly
and not stored with the state information. There is no need to save the value of
the summary with the state information; it is calculated on-the-fly and has the
appropriate value for the current state.

9

size:=0;

TNF Dfs(s0);

proc TNF Dfs(q);

local q’, i;

hash(q);

forall q
a

−→ q′ in increasing order do

if normal(a) and q’ not hashed then

i:=ord(a);

update sumr(i,a);

TNF Dfs(q’);

recover sumr(i,a);

end TNF Dfs;

In order to perform the update, we need to keep the last transition a that was
executed, and its old location i (0 if it was not introduced yet) in the summary.
The updating is performed using the procedure update sumr. It pushes all the
elements from the ith location to the left, and puts a at the end of the summary.
If a did not occur in the summary, then there is no need in the shift, but in this
case the size of the summary is increased.

proc update sumr(i, a);

if i=0 then

size:=size+1

else

for j:=i+1 to size do

summary[j-1]:=summary[j];

summary[size]:=a

end update sumr;

The function ord is used to find the position of a letter a in the summary.

func ord(a);

for i:=1 to size do

if summary[i]=a then return(i);

return(0); end ord;

Recovering the summary upon backtracking is done using the procedure
recover sumr. It reverses the effect of update sumr by shifting the vector ele-
ments indexed i (the original position of a) and higher to the right, and putting
a in the ith place. If i is zero, then there is no need for shifting, but the size of
the summary needs to be decremented.

proc recover sumr(i, a);

if i=0 then

summary[size]:=blank;

size:=size-1

10

else

for j:=size-1 downto i do

summary[j+1]:=summary[j]

summary[i]:=a;

end recover sumr;

The reduced DFS procedure TNF Dfs(s0) considers all transitions enabled
at the current state. For each of them, it checks whether the current string
augmented with this transition is in TNF. This is done through a call to the
function normal, which checks the summary, according to Lemma 4.

func normal(a);

for j:=size backto 1 do

b:=summary[j];

if ¬ (a I b) then return(true);

if a≪b then return(false);

return(true); end normal;

Theorem 2. Given an acyclic state space A, the algorithm TNF Dfs(s0) visits
all states of A.

Proof. We show that every state s is reached by the path first(s), where first(s)
stands for the path labeled by the minimal (for ≪) word reaching s. Clearly,
first(s) is in TNF. By contradiction, if it is not the case, take the state with the
smallest first(s) such that s is not explored by first(s). Then first(s) = ua, with
u reaching t with u ≪ first(s), hence u = first(t). When considering a, ua is in
TNF and acyclic, hence s will be reached by ua = first(s), and since first(s) is
minimal for ≪, no other path that reaches s has been considered before.

s0

s1 s2 s3 s4

s5 s6

bb b b bb

z

a

b

c

c

a

a

Fig. 1. A state space for which TNF DFS does not explore every state.

11

Unfortunately, for graphs that contain cycles, the conclusion of Theorem 2
is no longer true since ua and the minimal word reaching s may have loops.
Figure 1 provides an example of a (diamond closed) graph that is not fully
covered by the TNF algorithm (and hence, as shown in the next section, neither
by the SleepSetsDfs version of the sleep set algorithm). The nodes, except
s6, are ordered in the order in which they are discovered. The node s6 is not
discovered. The alphabet is {a, b, c, z}, with the ordering a ≪ b ≪ c ≪ z.
The independence relation is given by b I a, b I c. Consequently, z depends on
every other letter a, b, c, and a, c are dependent. The state s6 can only be visited
through s3 and s5, with first(s3) = bca and first(s5) = bcazb. Now, neither bcab

nor bcazba, correspondingly, are in TNF (but note that bcab is irreducible, as
required by EdgeLeanDfs), hence s6 is not visited. On the other hand, s6 is
visited by EdgeLeanDfs.

5 Connections with sleep sets

In [6], Godefroid describes a state space search algorithm that is based on the
concept of sleep sets. Intuitively, the sleep set of a state consists of transitions
that need not be explored from that state. It is constructed from the sleep set
of the predecessor of that state in depth-first search. Unfortunately, as follows
from Lemma 5, the original sleep set algorithm [7] may fail to visit some of the
states. One way of fixing this is to split states during search [14, 6], i.e., explore
a state more than once depending on the sleep set that it inherits from its
predecessor. Paper [8] proposes a different approach that is based on eliminating
some transitions from the sleep set. To compare our algorithms with the sleep set
approach, we describe a generic sleep-set based algorithm that generalizes the
algorithms of [7] and [8]. We then show how to represent our edge-lean algorithm
within this framework. Moreover, we show that our TNF-based algorithm is, in
fact, equivalent to that of [7].

Similarly to the algorithms of Sections 3 and 4, our generic sleep set algorithm
is based on depth-first search. For any node s, we store an associated set of
actions sleep(s), which we call the sleep set. These are the actions we are going
to ignore: if the label of an edge starting in s is in sleep(s), this edge is not
explored. In the beginning, we set sleep(s0) = ∅; the sleep sets of all other nodes
are constructed when we first discover these nodes. The sleep sets are updated
during the execution of the algorithm: whenever we backtrack to s from exploring
an edge labeled a, we add a to sleep(s). A newly discovered state inherits the
sleep set of its parent, with some modifications. Namely, suppose that a state
s′ is discovered from a state s by propagating over an edge labeled with a. Let
dep(a) = {b | ¬bIa}, i.e., dep(a) is the set of actions dependent of a. Then
sleep(s′) is a subset of sleep(s) \ dep(a). That is, to construct the sleep set for
s′, we take the sleep set for s and delete all actions that are dependent on a, as
well as some other actions.

In the following description, the function remove(s, a) determines which tran-
sitions should not be inherited by the state that is discovered from s by exploring

12

transition a. In the remainder of this section, we will compare algorithms that
result from different implementations of this function.

proc SleepSetsDfs(s,sleep);

local s′, current;

current:=sleep;

hash(s);

forall a 6∈ sleep, s
a

−→ s′ do

begin

if s′ not hashed then

rem = remove(s, a);
SleepSetDfs(s′,(current \ rem) \ dep(a));

current := current ∪ {a};
end;

end SleepSetsDfs;

This description leaves us with two degrees of freedom: the choice of function
remove(s, a) and the order in which we explore the edges from a given vertex.

Clearly, the algorithm of [7] can be seen as the most straightforward im-
plementation of this approach: namely, it sets remove(s, a) = ∅ for all s, a.
As we prove in Lemma 5, the algorithm of Section 4 is equivalent to this al-
gorithm as long as it considers actions in alphabetic order. More precisely, we
prove that the TNF algorithm described in Section 4 and the SleepSetDfs with
remove(s, a) ≡ ∅ ignore the same transitions and explore exactly the same set
of states.

Lemma 5. Assume the same alphabetic priority order ≪ used by both the re-
duced DFS based on TNF, and the sleep set search algorithm with remove(s, a) ≡
∅ Then from any given state s during the search we explore exactly the same suc-
cessors.

Proof. Consider an action a that is in the sleep set of a state s. Suppose that
s is reachable from the initial state via a path labeled with σ. Then σ can be
decomposed as σ = vu so that there is a state t reached from s0 via v, a has
been taken from t, and all the letters in u are independent of a. According to
the priority ≪, we have a ≪ u. Thus, if a is in the sleep set of s, according to
Lemma 3, σa cannot be in normal form.

Conversely, assume that according to the TNF reduction algorithm we do
not take a transition labeled with a after a state s, where the path on the stack
is labeled with σ. This is because σa is not in normal form. As per Lemma 3,
let u be the longest suffix of σ such that σ = vu, vau ≡ vua and vau ≪ vu. Let
t be the state reached after v. Then a is enabled from t. Now, consider the sleep
set algorithm. If a is taken from t, it will be taken before the first letter of u,
according to the lexicographic order priority (since a ≪ u). Then a must be in
the sleep set of s, and thus is not taken from it. Since a is enabled at t, if a is
not taken from t, it must be because a is in the sleep set when we reach t. But

13

this means that there is a longer suffix u′ of σ such that a is independent of u′,
and a ≪ u′, a contradiction to the maximality of u.

As shown by the example in Section 4, our TNF-based algorithm may fail
to discover some of the states. Hence, the same is true for this version of
SleepSetsDfs. Indeed, one can run this algorithm on our example to verify that
the state s6 is not discovered. To follow the search, notice that the sleep sets are
as follows: Sleep(s0) = Sleep(s1) = Sleep(s4) = ∅, Sleep(s2) = Sleep(s3) = {b}
and Sleep(s5) = {a}.

Another existing sleep set algorithm that fits into this framework is that
of [8]. It this version of the algorithm, remove(s, a) consists of all transitions
that start in s and lead to a state that is currently on the search stack (that is,
the set rem is independent of a and hence can be computed outside of the main
loop). Note that this approach forces us to look at each transition, as we have
to check whether it leads to a state on the stack.

Finally, using an argument similar to that of Lemma 5, it is easy to see
that the edge lean algorithm presented in Section 3 can also be seen as an
implementation of our generic algorithm. Namely, we denote bigger(a) = {b |
a ≪ b}, i.e.,the set of actions bigger than a in the alphabetic order, and set
remove(s, a) = bigger(a).

This version requires slightly more space and time than the other two, as the
function remove(s, a) has to be called for each transition.

Observe that both of our algorithms do not “split” states. Moreover, when
we compare states (upon generation, for backtracking), we only compare the
original state values. The additional data structures used by our algorithm are
computed on-the-fly. As argued above, this provides significant time and memory
savings compared to state-splitting algorithms.

6 Applications

The idea of speeding up state-space search by using independence relation be-
tween actions is well-known in the model-checking community. In this section,
we present several examples from areas as various as bioinformatics, auction
theory, voting theory and game theory, where one can also apply the techniques
we developped in this paper.

Mining Maximal Frequent Itemsets Mining maximal itemsets is an impor-
tant problem in datamining (e.g. [9]) with various applications in other areas like,
for instance, bioinformatics [11]. We assume a set I = {i1, i2, . . . , im} of m dis-
tinct items and a database of n transactions D = t1, t2, . . . , tn. Each transaction
is a subset of I. Let X ⊆ I. We define the support σ(X) of X as the number of
transactions in which X occurs as a subset. A set is frequent iff σ(X) ≥ minsup ,
with some minimum support value minsup . A frequent set is maximal if it is
not a subset of any other frequent set. The algorithm for generating all maxi-
mal frequent sets [9] is a backtracking algorithm that, beginning with an empty

14

set, builds frequent sets by adding one item at a time. An item is added to the
current (frequent) set only if the new set that is obtained is frequent too. The
algorithm generates a state space whose states are frequent sets. The transitions
correspond to the actions of adding a new item to the set. The choice which
item will be added to the set is obviously non-deterministic. Two actions are
independent if they add items that are contained in all sets of the database. The
maximal frequent sets correspond to “deadlock” states, i.e., states (sets) that
cannot be further extended. Since added items are never removed from a set the
state space graph is acyclic. A variant of this algorithm is applied in bioinfor-
matics for finding similarities between biological networks [11]. For this purpose
the original problem is transformed into a one of finding maximal subgraphs in
a collection of undirected graphs. The graphs are represented as sets of edges,
therefore there is a one-to-one correspondence with the original problem (edges,
graphs, collection of graphs, vs. items, sets, database, respectively).

Consecutive auctions with budgets Suppose than we have m items for sale
and there are n agents, each of which is interested in some or all of the items.
More precisely, each agent has a non-negative valuation for each item; if an agent
is not interested in an item at all, he values it at 0. Moreover, each agent has
a budget, which is the total amount of money available to him. The items are
auctioned off consecutively. For each item, we run a second-price auction [5],
i.e., a sealed-bid auction in which all agents submit their bids, the agent who
submitted the highest bid wins and pays the second highest bid. When there
is only one object for sale, this auction format is truthful, i.e., it is a dominant
strategy for each bidder to bid his true value for the object. In our scenario,
this is not necessarily the case. However, it is a fairly common approach [4] to
assume that the bidders are myopic, i.e., they bid truthfully while trying to
remain within their budget. More formally, if item i is auctioned off in the jth

auction, the agent k bids min{vik, b
(j−1)
k }, where vik is his valuation for this item

and b
(j−1)
k is what remains of his budget after the first j − 1 auctions.

Clearly, the overall outcome depends on the order in which the objects are
being sold. We may want to know if for given valuations and budgets, there is
an order that achieves certain allocation, or a certain total profit. To reduce the
search space, we observe that if for two objects the sets of bidders interested in
these objects (i.e., the bidders who have strictly positive valuations for them)
are disjoint, the order in which these objects are auctioned off is irrelevant.
Moreover, the respective state space is clearly acyclic, as after each round the
number of unallocated objects decreases.

Voting We are given n voters and m candidates. Each voter has a preference or-
dering over some of the candidates, which is given by a total transitive irreflexive
relation on this subset of candidates. We assume that all candidates not included
in this preference ordering are considered to be strictly worse than the ones that
are included; moreover, all these candidates are equally bad from this voter’s

15

point of view. The goal is to select a committee that consist of r members,
r < m. To do this, we use the classical Single Transferable Vote (STV) method.
Namely, each voter submits a ballot in which he lists the candidates from his
preference ordering, best to worst. We count the number of first-place votes re-
ceived by each candidate. We then select a candidate with the smallest number
of first-place votes and cross him out from all ballots. Now all ballots that ranked
this candidate first are transferred to the candidates who are listed second on
these ballots, i.e., some candidates gain a few first-place votes. We repeat this
process till only r candidates remain.

As described, this process is non-deterministic: there may be several can-
didates with the smallest number of first-place votes, and we have to choose
which one of them to eliminate. Different choices may lead to different election
outcomes. Generally speaking, these choices are not independent: if there are
two candidates c1 and c2 with the smallest number of first-place votes, after we
eliminate c1, candidate c2 may gain some votes and it will no longer be among
the candidates with the smallest number of first-place votes. However, if no voter
includes both c1 and c2 in his ballot, eliminating c1 adds no votes to c2 and vice
versa. This may happen, for example, if all voters and candidates belong to some
parties, and each voter only ranks the candidates from his party. In this case,
eliminating c1 and eliminating c2 are two independent actions.

We may want to know whether for any choice of candidates to be eliminated
at each step, a certain candidate or a group of candidates is (or is not) elected.
Again, the system is acyclic, since after each round the number of surviving
candidates decreases.

Multi-item auctions Suppose than we have m items I = {i1, . . . , im} for sale
and there are n agents a1, . . . , an, each of which is interested in a subset Ii ⊂ I

of these items. An agent gains a value vi if he acquires all items in his desired
bundle and 0 otherwise.

To sell the objects, we run m simultaneous ascending (English) auctions [5].
In any such auction, the bidding starts at 0, and any of the participants is
allowed to bid an increment δ above the current price to become the provisional
winner. The bidding stops when noone wants to bid above the current price.
The participant who is the provisional winner at the end of the auction receives
the object and pays his bid.

The bidding takes place in rounds. During each round, a single agent is
allowed to bid on a single object. We restrict the agents’ behavior as follows: an
agent is only allowed to bid on the objects in his desired bundle, and his total bid
(i.e., the total price of the items for which he is the provisional winner) should
not exceed his value. Also, if the agent is the provisional winner for all object in
his bundle, he is allowed not to bid; otherwise, he has to bid on one of the items
in his bundle, or, if he cannot afford to, drop out of the game.

We may want to check that all trajectories of this system satisfy certain
properties. For example, given all agents bundles and values, we may want to

16

verify that it is never the case that agent 1 gets 3 items, while agent 2 gets no
items whatsoever.

Note that if the bundles of two agents do not intersect, their actions are
independent. Moreover, each transition increases the sum of all bids, so the
state system (to be described in more detail) is acyclic.

Game of Life John Conway’s Game of Life is the best-known example of a
cellular automaton. The game takes place on a two-dimensional grid. In the
beginning of the game, a subset of cells is alive, while other cells are dead. The
game proceeds in stages. During each stage, each cell may change is state from
dead to alive or vice versa depending on the states of its eight neighbors.

We consider a modified version of this game, in which during each stage
exactly one cell changes its state according to the rules of the original game.
Also, we assume that the game takes place on a finite board; we extend the rules
for the cells on the boundary in some reasonable way. Clearly, if two cells are
not neighbors, their actions are independent. Given an initial configuration, we
may want to know if a certain configuration ever appears on the board. Unlike
in the previous three cases, this state system is not necessarily acyclic, hence the
TNF DFS algorithm may not explore every state.

7 Experiments

We implemented the algorithms EdgeLeanDfs and TNF Dfs from Sections 3 and 4
in the tool Spin [10]. We tested state space generation of examples from the lit-
erature. The results are shown in Table 1: The columns correspond to regular
depth-first search, the edge lean algorithm, and the TNF-based algorithm, re-
spectively. For each example we give the number of states and edges explored,
and the maximal size of the stack, in unit, thousands (K) and millions (M).

The first two examples, DMSnoCC and DMSwithCC, are models of system-
on-chip designs of a distributed memory system on message passing network
without and with cache coherency, respectively. For more details we refer the
reader to [1]. The examples RW1, RW4, and RW6 are models of various instances
of the so-called Replicated Workers problem described in [2]. The rest of the
models are from the test suite that comes with the standard distribution of
Spin.

Although the algorithm TNF Dfs might not explore the whole state spaces
(every of our examples contains cycles), we observed in only one case (RW6)
a difference between the number of states generated by EdgeLean and TNF.
In most of the experiments, both of our algorithms explore considerably fewer
transitions than regular depth-first search. On the other hand, the difference
between EdgeLeanDfs and TNF Dfs regarding the number of transistions is not
very significant. With respect to the stack size (and thus memory consumption),
our algorithms are up to a thousand times better than regular DFS (DMS exam-
ples). Also, on many examples TNF DFS uses much less space than EdgeLean

17

Table 1. Experimental Results.

Spin with regular DFS Spin with EdgeLeanDfs Spin with TNF Dfs

model states edges stack states edges stack states edges stack

DMSnoCC 229M 1009M 26M 229M 296M 47,3K 229M 265M 32,2K

DMSwithCC 132M 541M 18,9M 132M 174M 384K 132M 151M 29,2K

RW1 181K 852K 2219 181K 409K 1224 181K 339K 360

RW4 263K 1.1M 2253 263K 558K 1247 263K 462K 625

RW6 11.5M 65.6M 827K 11.5M 59.6M 784K 9.9M 41.3M 148K

petersonN 25362 69787 5837 25362 28855 1035 25362 28328 632

pftp 207K 604K 3077 207K 480K 2578 207K 473K 2824

snoopy 62179 213K 6877 62179 193K 5670 62179 192K 5546

leader 38863 158K 113 38863 51565 112 38863 51565 113

sort 374238 1.53M 177 374238 413K 176 374238 413K 177

(see DMSwithCC, RW and the petersonN examples), while EdgeLean barely
comes on top in pftp, leader and sort. It is quite surprising that both algorithms
explore roughly the same number of transitions, but TNF DFS needs a stack
much smaller than the one needed by EdgeLean DFS (examples DMS, RW and
petersonN), though it can be explained.

References

1. T. Basten, D. Bošnački, M. Geilen, Cluster-based Partial Order Reduction, Auto-
mated Software Engineering, 11(4), pp. 365–402, Kluwer, 2004.

2. C. S. Păsăreanu, M. B. Dwyer, M. Huth: Assume-Guarantee Model Checking of
Software: A Comparative Case Study, in Theoretical and Practical Aspects of SPIN
Model Checking, LNCS 1680, Springer, 1999.

3. E. Clarke, O. Grumberg, D. Peled, Model Checking, MIT Press, 2000.
4. P. Cramton, Y. Shoham, R. Steinberg, Combinatorial Auctions, MIT Press, 2006
5. D. Fudenberg and J. Tirole, Game Theory, MIT Press, 1991.
6. P. Godefroid, Partial-Order Methods for the Verification of Concurrent Systems

– An Approach to the State-Explosion Problem, PhD thesis, University of Liege,
Computer Science Department, November 1994.

7. P. Godefroid, P. Wolper, Using Partial Orders for the Efficient Verification of
Deadlock Freedom and Safety Properties, in CAV 1991, pp. 176–185, LNCS 575,
1991.

8. P. Godefroid, G. Holzmann, D. Pirottin, State-Space Caching Revisited, Formal
Methods in System Design 7:3, pp. 227–242, 1995

9. K. Gouda, M.J Zaki, Efficiently Mining Maximal Feqent Itemsets, IEEE Interna-
tional Conference on Data Mining (ICDM ’01), pp. 163–170, 2001.

10. G. Holzmann, The SPIN Model Checking, Addison Wesley, 2003.
11. M. Koyuturk, A. Grama, W. Szpankowski, An Efficient Algorithm for Detecting

Frequent Subgraphs in Biological Networks Bioinformatics 20, suppl. 1, pp.i200–
i207, Oxford University Press, 2004.

12. A. Mazurkiewicz, Trace semantics, in Advances in Petri Nets 1986, LNCS 255,
pp. 279–324, 1986.

13. E. Ochmanski, Languages and Automata, in The Book of Traces, V. Diekert, G.
Rozenberg (eds.), 167–204, 1995.

18

14. D. Peled, Combining Partial Order Reductions with On-the-fly Model-Checking,
in CAV 1994, LNCS 818, pp. 377-390, 1994.

15. A. Valmari: A Stubborn Attack on State Explosion, Formal Methods in System
Design 1(4): 297-322, 1992.

19

