

Analyzing NR Protocols

Introduction

Example: tl Fair ZG Protocol

Non-Repudiation as Authentication

Non-Repudiation as Agents Knowledge

Conclusion

Automatic Methods for Analyzing Non-Repudiation Protocols with an Active Intruder

Francis Klay & Laurent Vigneron

France Telecom R&D - LORIA, Nancy University

AVOTE, Cachan, Sept. 12, 2008

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Analyzing NR Protocols

Introduction

Example: the Fair ZG Protocol

Non-Repudiation as Authentication

Non-Repudiation as Agents Knowledge

Conclusion

1 Introduction

2 Example: the Fair ZG Protocol

3 Non-Repudiation as Authentication

Non-Repudiation as Agents Knowledge

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

5 Conclusion

4

Introduction

Analyzing NR Protocols

Introduction

Example: th Fair ZG Protocol

Non-Repudiation as Authentication

Non-Repudiation as Agents Knowledge

Conclusion

Context:

- Security of communications over an open network (wireless or not)
- Handled at software level by cryptographic protocols

Model The Dolev-Yao model which is a logical model (not a computational one).

Standard properties intensively studied:

- Secrecy
- Authentication

Efficient analysis methods and automatic tools already exist for several years

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Introduction

Analyzing NR Protocols

Introduction

Example: th Fair ZG Protocol

Non-Repudiation as Authentication

Non-Repudiation as Agents Knowledge

Conclusion

Some security properties are rarely considered:

- Non-repudiation
- Fair exchange

What is non-repudiation?

Impossibility to deny participation to the communication

What is the role of non-repudiation protocols?

- To generates evidences of participation to the protocol *Easy!...* by digital signatures for example
- But, need of fairness: reciprocity and synchronization of non-repudiation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Much more difficult: a trusted third party (TTP) is needed for fair exchanges

Introduction

Analyzing NR Protocols

Introduction

Example: th Fair ZG Protocol

Non-Repudiation as Authentication

Non-Repudiation as Agents Knowledge

Conclusion

Properties of a Non-Repudiation Protocol and Evidences Roughly speaking given a session where *A* sends *M* to *B*.

- non-repudiation of receipt: if A gets the set of receiving evidences of M by B then B has effectively received M.
- non-repudiation of origin: if B gets the set of sending evidences of M by A then A has effectively send M for B.
- fairness (also called strong fairness): at the protocol end either A and B get their evidences sets, or none of them has any valuable information.
- timeliness: whatever happens during the protocol run, all participants can reach a state that preserves fairness, in a finite time.

Non-Repudiation Protocols

Analyzing NR Protocols

Introduction

- Example: th Fair ZG Protocol
- Non-Repudiation as Authentication
- Non-Repudiation as Agents Knowledge

Conclusion

Kinds of fair non-repudiation protocols with TTP

- With full involvement of a TTP: used as delivery agent of evidences
 - Problem: strong activity of the TTP; may be a bottleneck *Example:* Fair Zhou-Gollmann protocol (light TTP)
- Optimistic protocols: use of a TTP only if needed Based on the use of several protocols Permits each party to complete its protocol, even in case of problem
 - Example: Cederquist-Corin-Dashti protocol
- Transparent TTP have been introduced (impossible to deduce if the TTP was involved from the evidences) Example: S.Kremer & 0.Markowitch 2001

Example: the Fair Zhou-Gollmann Protocol

Analyzing NR Protocols

Introduction

Example: the Fair ZG Protocol

Non-Repudiation as Authentication

Non-Repudiation as Agents Knowledge

Conclusion

A simple protocol for guaranteeing the fair exchange of a message between two agents; involves a TTP.

History of this protocol:

- Presented by Zhou and Gollmann in 1996
- Several analyzes by ZG, Schneider, Bella-Paulson,...

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- First attack found by Gürgens & Rudolph in 2003
- but still a good example for practicing

The FairZG Protocol

Analyzing NR Protocols

Introduction

Example: the Fair ZG Protocol

Non-Repudiation as Authentication

Non-Repudiation as Agents Knowledge

Conclusion

1. $A \rightarrow B$: $fNRO.B.L.\{M\}_K.NRO$ where $NRO = \{fNRO.B.L.\{M\}_K\}_{inv(Ka)}$ 2. $B \rightarrow A$: fNRR.A.L.NRRwhere $NRR = \{fNRR.A.L.\{M\}_K\}_{inv(Kb)}$ 3. $A \rightarrow TTP$: fSUB.B.L.K.SubKwhere $SubK = \{fSUB.B.L.K\}_{inv(Ka)}$ 4a. $B \leftrightarrow TTP$: fCON.A.B.L.K.ConKwhere $ConK = \{fCON.A.B.L.K\}_{inv(Kttp)}$ 4b. $A \leftrightarrow TTP$: fCON.A.B.L.K.ConK

At the end: A and B know M, and can prove the participation of each other to the communication

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

FairZG Protocol: Properties

Analyzing NR Protocols

Introduction

Example: the Fair ZG Protocol

Non-Repudiation as Authentication

Non-Repudiation as Agents Knowledge

Conclusion

Non-repudiation of origin with the evidences set for B:

 $\{NRO, ConK\} = \{\{fNRO.B.L.\{M\}_K\}_{inv(Ka)}, \{fCON.A.B.L.K\}_{inv(Kttp)}\}$

Non-repudiation of receipt with the evidences set for *A*:

 $\{NRR, ConK\} = \{\{fNRR.A.L.\{M\}_K\}_{inv(Kb)}, \{fCON.A.B.L.K\}_{inv(Kttp)}\}$

Fairness:

at the end of the protocol run, either A and B have both their evidences, or none of them has them.

Hypothesis: Evidences are supposed to be correctly defined.

Analyzing NR Protocols

Introduction

Example: th Fair ZG Protocol

Non-Repudiation as Authentication

Non-Repudiation as Agents Knowledge

Conclusion

As non-repudiation is a form of authentication, we try to translate the non-repudiation of origin as authentication

Evidences set: $\mathcal{NRO}_{\mathcal{B}}(A) = \{NRO, ConK\}$

1. $A \rightarrow B$: $fNRO.B.L.\{M\}_K.NRO$ where $NRO = \{fNRO.B.L.\{M\}_K\}_{inv(Ka)}$ 2. $B \rightarrow A$: fNRR.A.L.NRRwhere $NRR = \{fNRR.A.L.\{M\}_K\}_{inv(Kb)}$ 3. $A \rightarrow TTP$: fSUB.B.L.K.SubKwhere $SubK = \{fSUB.B.L.K\}_{inv(Ka)}$ 4a. $B \leftrightarrow TTP$: fCON.A.B.L.K.ConKwhere $ConK = \{fCON.A.B.L.K\}_{inv(Kttp)}$ 4b. $A \leftrightarrow TTP$: fCON.A.B.L.K.ConK

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

Analyzing NR Protocols

Introduction

Example: th Fair ZG Protocol

Non-Repudiation as Authentication

Non-Repudiation as Agents Knowledge

Conclusion

As non-repudiation is a form of authentication, we try to translate the non-repudiation of origin as authentication

Evidences set: $\mathcal{NRO}_{\mathcal{B}}(A) = \{NRO, ConK\}$

1. $A \rightarrow B$: $fNRO.B.L.\{M\}_{K}.NRO$ where $NRO = \{fNRO.B.L.\{M\}_{K}\}_{inv(Ka)}$ 2. $B \rightarrow A$: fNRR.A.L.NRRwhere $NRR = \{fNRR.A.L.\{M\}_{K}\}_{inv(Kb)}$ 3. $A \rightarrow TTP$: fSUB.B.L.K.SubKwhere $SubK = \{fSUB.B.L.K\}_{inv(Ka)}$ 4a. $B \leftrightarrow TTP$: fCON.A.B.L.K.ConKwhere $ConK = \{fCON.A.B.L.K\}_{inv(Kttp)}$ 4b. $A \leftrightarrow TTP$: fCON.A.B.L.K.ConK

Analyzing NR Protocols

Introduction

Example: th Fair ZG Protocol

Non-Repudiation as Authentication

Non-Repudiation as Agents Knowledge

Conclusion

As non-repudiation is a form of authentication, we try to translate the non-repudiation of origin as authentication

Evidences set: $\mathcal{NRO}_{\mathcal{B}}(A) = \{NRO, ConK\}$

1. $A \rightarrow B$: $fNRO.B.L.\{M\}_K.NRO$ where $NRO = \{fNRO.B.L.\{M\}_K\}_{inv(Ka)}$ 2. $B \rightarrow A$: fNRR.A.L.NRRwhere $NRR = \{fNRR.A.L.\{M\}_K\}_{inv(Kb)}$ 3. $A \rightarrow TTP$: fSUB.B.L.K.SubKwhere $SubK = \{fSUB.B.L.K\}_{inv(Ka)}$ 4a. $B \leftrightarrow TTP$: fCON.A.B.L.K.ConKwhere $ConK = \{fCON.A.B.L.K\}_{inv(Kttp)}$ 4b. $A \leftrightarrow TTP$: fCON.A.B.L.K.ConK

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

Analyzing NR Protocols

Introduction

Example: th Fair ZG Protocol

Non-Repudiation as Authentication

Non-Repudiation as Agents Knowledge

Conclusion

As non-repudiation is a form of authentication, we try to translate the non-repudiation of origin as authentication

Evidences set: $\mathcal{NRO}_{\mathcal{B}}(A) = \{NRO, ConK\}$

1. $A \rightarrow B$: $fNRO.B.L.\{M\}_{K}.NRO$ where $NRO = \{fNRO.B.L.\{M\}_{K}\}_{inv(Ka)}$ 2. $B \rightarrow A$: fNRR.A.L.NRRwhere $NRR = \{fNRR.A.L.\{M\}_{K}\}_{inv(Kb)}$ 3. $A \rightarrow TTP$: fSUB.B.L.K.SubKwhere $SubK = \{fSUB.B.L.K\}_{inv(Ka)}$ 4a. $B \leftrightarrow TTP$: fCON.A.B.L.K.ConKwhere $ConK = \{fCON.A.B.L.K\}_{inv(Kttp)}$ 4b. $A \leftrightarrow TTP$: fCON.A.B.L.K.ConK

Analyzing NR Protocols

Introduction

Example: th Fair ZG Protocol

Non-Repudiation as Authentication

Non-Repudiation as Agents Knowledge

Conclusion

As non-repudiation is a form of authentication, we try to translate the non-repudiation of origin as authentication

Evidences set: $\mathcal{NRO}_{\mathcal{B}}(A) = \{NRO, ConK\}$

1. $A \rightarrow B$: $fNRO.B.L.\{M\}_{K}.NRO$ where $NRO = \{fNRO.B.L.\{M\}_{K}\}_{inv(Ka)}$

2. $B \rightarrow A$: fNRR.A.L.NRRwhere $NRR = \{fNRR.A.L.\{M\}_K\}_{inv(Kb)}$

3. $A \rightarrow TTP$: fSUB.B.L.K.SubK where SubK = {fSUB.B.L.K}_{inv(Ka)}

4a. $B \leftrightarrow TTP$: fCON.A.B.L.K.ConKwhere $ConK = \{fCON.A.B.L.K\}_{inv(Kttp)}$ 4b. $A \leftrightarrow TTP$: fCON.A.B.L.K.ConK

Prop 1: If auth(B, A, NRO), auth(TTP, A, SubK) and auth(B, TTP, ConK), then $NRO_B(A)$ is valid.

Analyzing NR Protocols

Introduction

Example: th Fair ZG Protocol

Non-Repudiation as Authentication

Non-Repudiation as Agents Knowledge

Conclusion

As non-repudiation is a form of authentication, we try to translate the non-repudiation of origin as authentication

Evidences set: $\mathcal{NRO}_{\mathcal{B}}(A) = \{NRO, ConK\}$

1. $A \rightarrow B$: $fNRO.B.L.\{M\}_K.NRO$ for $\{M\}_K$ where $NRO = \{fNRO.B.L.\{M\}_K\}_{inv(Ka)}$ 2. $B \rightarrow A$: fNRR.A.L.NRRwhere $NRR = \{fNRR.A.L.\{M\}_K\}_{inv(Kb)}$ 3. $A \rightarrow TTP$: fSUB.B.L.K.SubK for Kwhere $SubK = \{fSUB.B.L.K\}_{inv(Ka)}$ 4a. $B \leftrightarrow TTP$: fCON.A.B.L.K.ConK for Kwhere $ConK = \{fCON.A.B.L.K\}_{inv(Ktp)}$ 4b. $A \leftrightarrow TTP$: fCON.A.B.L.K.ConK

Prop 1: If auth(B, A, NRO), auth(TTP, A, SubK) and auth(B, TTP, ConK), then $NRO_B(A)$ is valid.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Limitations of this Approach

Analyzing NR Protocols

Introduction

Example: the Fair ZG Protocol

Non-Repudiation as Authentication

Non-Repudiation as Agents Knowledge

Conclusion

Similarly for the non-repudiation of receipt we get:

Prop 2: If auth(A, B, NRR), auth(A, TTP, ConK) and auth(B, TTP, ConK), then $NRR_A(B)$ is valid.

Limitations of this Approach

- Handling dishonnest agents is difficult in tools since they can generate request/witness as they want.
- Optimistic non-repudiation protocols include sub-protocols like *abort* or *resolve*. This non-deterministic context implies at least a disjunction of distinct authentications.

Consequence: non-repudiation as authentication does not seem to be the simplest way to handle non repudiation.

Non-Repudiation as Agents Knowledge

Analyzing NR Protocols

- Introduction
- Example: th Fair ZG Protocol
- Non-Repudiation as Authentication
- Non-Repudiation as Agents Knowledge
- Conclusion

- **Idea:** to be able to check if an agent knows its evidences
- Mean: to annotate the protocol with a predicate aknows(t), for asserting when an agent knows or can deduce t (here t is an evidence part).
- Properties: to describe properties like NR, we use LTL formulas combining *aknows* and *deduce* predicates.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Results

Analyzing NR Protocols

Introduction

Example: th Fair ZG Protocol

Non-Repudiation as Authentication

Non-Repudiation as Agents Knowledge

Conclusion

Th 1: Given a non-repudiation service of receipt for A against B about a message M with the set of evidences $\mathcal{NRR}_{\mathcal{A}}(\mathcal{B})$. If at the session end the following formula is true then the non-repudiation of receipt is valid.

$$\begin{array}{lll} \mathsf{aknows}(A,\mathcal{NRR}_{\mathcal{A}}(\mathcal{B})) & \Longrightarrow & \mathsf{aknows}(B,M) \\ \mathsf{deduce}(A,\mathcal{NRR}_{\mathcal{A}}(\mathcal{B})) & \Longrightarrow & \mathsf{aknows}(A,\mathcal{NRR}_{\mathcal{A}}(\mathcal{B})) \end{array}$$

Remark:

■ NRR_A(B) needs "to depend" on M (well-formed evidences set).

Analyzing NR Protocols

Introduction

Example: th Fair ZG Protocol

Non-Repudiation as Authentication

Non-Repudiation as Agents Knowledge

Conclusion

Th 2:

Given A and B playing in the same session of a protocol P with valid NRR and NRO services. P is fair iff:

 $aknows(A, \mathcal{NRO}_{\mathcal{B}}(\mathcal{A})) \iff aknows(A, \mathcal{NRR}_{\mathcal{A}}(\mathcal{B}))$

Remark:

• We give a more general result, for any non-repudiation service.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

FairZG Protocol: Analysis

Analyzing NR Protocols

Introduction

Example: th Fair ZG Protocol

Non-Repudiation as Authentication

Non-Repudiation as Agents Knowledge

Conclusion

Two sessions between an intruder Ai and B, using the same TTP.

3. $Ai \rightarrow TTP$: fSUB.B.L.K.SubKwhere $SubK = \{fSUB.B.L.K\}_{inv(Kai)}$

5. $Ai \leftrightarrow TTP$: fCON.Ai.B.L.K.ConKwhere $ConK = \{fCON.A.B.L.K\}_{inv(Kttp)}$

Ai waits for the TTP retention timeout.

1. $Ai \rightarrow B$: $fNRO.B.L.\{M\}_K.NRO$ where $NRO = \{fNRO.B.L.\{M\}_K\}_{inv(Kai)}$

2. $B \rightarrow Ai$: fNRR.Ai.L.NRRwhere $NRR = \{fNRR.Ai.L.\{M\}_K\}_{inv(Kb)}$

- Now Ai has its evidences set {NRR, ConK}
- But B can no more get ConK from the TTP to build its evidences set {NRO, ConK}

Remark: The previous attack (Gürgens & Rudolph in 2003) needs no retention on the TTP at the session end. $\langle \Box \rangle$ \langle

Conclusion

Analyzing NR Protocols

Introduction

- Example: th Fair ZG Protocol
- Non-Repudiation as Authentication
- Non-Repudiation as Agents Knowledge
- Conclusion

- We have also studied a more complex protocol, CCD, discovering two attacks.
- We give a very simple procedure to handle non-repudiation protocols for a bounded number of sessions.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

In future works we will take care of the juge.