A Complete Symbolic Bisimilarity for an Extended Spi Calculus

Johannes Borgström

[SecCo 08]
A Complete Symbolic Bisimilarity for an Extended Spi Calculus

Johannes Borgström

Introduction

Language Constructor-Destructor Languages

Correctness Symbolic Bisimulation

Practicality Infinite Branching

Conclusion

The Bottom Line

1. Constructor-Destructor expression languages permit a smooth extension of classical spi.

2. Environment decompositions yield a complete symbolic bisimilarity.

3. Infinite decompositions may be needed unlike in the pi calculus.
Overview

1 Language
 Constructor-Destructor Languages

2 Correctness
 Symbolic Bisimulation

3 Practicality
 Infinite Branching
Spi Calculus

\[P, Q ::= 0 \mid F(x).P \mid \overline{F}\langle G \rangle .P \mid ! F(x).P \mid \phi P \mid P + P \mid P \upharpoonright P \mid (\nu a) P \]

\[\phi, \psi ::= tt \mid [G = F] \mid [F : N] \mid \phi \land \phi \mid \neg \phi \]

\[F, G ::= a \mid x \mid E_G(F) \mid D_G(F) \]

Parameter: Expression language \(F, G \) with evaluation \(e \).

Example: \(e \) induced by \(D_y(E_y(x)) \to x \).

\[e(G) = a \]

\[G(x).P \xrightarrow{a(x)} P \]

\[e(G) = a \quad e(F) = M \]

\[\overline{G}\langle F \rangle .P \xrightarrow{\overline{a}\langle M \rangle} P \]

\[P \xrightarrow{a(x)} P' \quad Q \xrightarrow{(\nu \tilde{b}) \overline{a}\langle M \rangle} Q' \]

\[P \upharpoonright Q \xrightarrow{\tau} (\nu \tilde{b}) \left(P' \{ M / x \} \upharpoonright Q' \right) \]

if \(\{ \tilde{b} \} \cap \text{fn}(P) = \emptyset \)
Expression Languages

- Symmetric key encryption is insufficient.
- \mathcal{E} term algebra over names modulo congruence \equiv.
- Often: Congruence derived from rewrite rules $D_y(E_y(x)) \rightarrow x$.
- Knowledge environment $\sigma : \mathcal{V} \rightarrow \mathcal{E}$ knows F if there is G with $n(G) \cap n(\sigma) = \emptyset$ and $F \equiv G\sigma$.

- Two environments σ, ρ are statically equivalent if for all F, G with $n(F, G) \cap n(\sigma, \rho) = \emptyset$ we have $F\sigma \equiv G\sigma$ iff $F\rho \equiv G\rho$.

Theorem (EXPRESS’06)

There exist \mathcal{E}, \equiv where knowledge is decidable but static equivalence is not.
Constructors & Destructors

- Split function symbols into constructors and destructors.
- Messages $M \in \mathcal{M}$ only contain constructors.
- One rule per destructor: $g(f(\tilde{M}), \tilde{N}) \rightarrow M_j$
- Evaluation: $e(F) := F \downarrow$ whenever $G \downarrow \in \mathcal{M}$ for all subterms G of F.
- Competitors
 - Subterm-convergent: $G \prec F$ in every rule $F \rightarrow G$.
 - Data-term: Every rule is of the form $g(\tilde{M}) \rightarrow x$.

Result: Smooth extension of our earlier work; Closed form for static equivalence.
(See my PhD thesis)
Synthesis, Analysis and Irreducibles

SYN-K
\[
\frac{M \in \kappa}{M \in S(\kappa)}
\]

SYN-\(f\)
\[
\frac{\{\tilde{M}\} \subseteq S(\kappa)}{f(\tilde{M}) \in S(\kappa)}
\]

ANA-K
\[
\frac{M \in \kappa}{M \in A(\kappa)}
\]

ANA-\(f\)
\[
\frac{M \in A(\kappa)}{M \in SA(\kappa)}
\]

ANA-S
\[
\frac{\{\tilde{M}\} \subseteq SA(\kappa)}{f(\tilde{M}) \in SA(\kappa)}
\]

ANA-\(g\)
\[
\frac{f(\tilde{M}) \in A(\kappa) \quad \{\tilde{N}\} \subseteq SA(\kappa)}{M \in A(\kappa)}
\]

\[
\text{if } g(f(\tilde{M}), \tilde{N}) \rightarrow^H M
\]

\(\mathcal{I}(\kappa) := A(\kappa) \setminus S^+(A(\kappa))\) where
\(S^+(\kappa) := \{f(\tilde{M}) \mid \{\tilde{M}\} \subseteq S(\kappa)\}.\)
Correctness Properties

- Based on the concept of indistinguishability (written \equiv). The same attacks should yield the same behavior.

- Secrecy: $\forall M, N \quad P\{^{M/x}\} = P\{^{N/x}\}$

- Authenticity: $\forall M \quad P\{^{M/x}\} = P_{spec}\{^{M/x}\}$

- The (Dolev-Yao) attacker can
 - Intercept messages on public channels
 - Inject messages into public channels
 - Perform cryptographic operations, including key generation

The attacker corresponds to an arbitrary process.
Strong Barbed Equivalence

Definition

- $P \downarrow_b (P \text{ exhibits barb } b)$ if $\exists x, P'$ s.t. $P \xrightarrow{b(x)} P'$.
- Barbed bisimilarity \simeq is the greatest τ-bisimulation such that if $P \simeq Q$ and $b \in \mathcal{N}$ then $P \downarrow_b$ iff $Q \downarrow_b$.
- Two processes P and Q are barbed equivalent, written $P \simeq Q$, if for all processes R, $(P \parallel R) \simeq (Q \parallel R)$.

- R above models the intruder, performing tests \downarrow_b.
- Our target equivalence.
- Three issues for mechanization.
The Observer

Problem: Quantification over observer contexts is hard [AG99]

Idea: Consider the LTS, keep track of adversary knowledge and message correspondence with environments. [AG98, BDP02]

- Environments are usually not needed.
- \(e \vdash P \sim Q \): \(P \) and \(Q \) are bisimilar under \(e \).
- \(e \) is the “knowledge of the attacker”.

- Our choice: Hedges \(h \supseteq \mathcal{E} \times \mathcal{E} \)
- Synthesis, Analysis, Irreducibles defined *mutatis mutandis*.
Branching on Input

Problem: Infinite branching on process input.

Idea: Symbolic semantics, input a variable and successively add constraints.

- Symbolic semantics exist for pi and value-passing CCS. Environments are needed in both cases.
- This work: A general symbolic semantics for spi, and a corresponding bisimilarity.
Constraint Systems

Problem: Infinitely many potential solutions to constraints.

Idea: Find a finite set of representative solutions.

- Always possible in the pi calculus [Bor95].
- In NP for subterm-convergent message languages and positive guards [Bau07].
- Not treated here.
Symbolic Operational Semantics

- The Spi calculus only permits communication of *proper messages* on *channels that are names*.
- Action prefixes introduce constraints.

\[
F(x).P \xrightarrow{\text{e}(F)(x)} P \\
\overline{F}\langle G\rangle.P \xrightarrow{\text{e}(F)\langle e(G)\rangle} P
\]

- Abstract evaluation prevents unneeded scope extrusion.

\[g(f(\tilde{x}), \tilde{y}) \rightarrow_a x_i \text{ where } g(f(\tilde{M}), \tilde{N}) \rightarrow M_i; \text{ e}_a(F) = F\downarrow_a.\]

Lemma

For all \(F, \sigma, M, n, \) if \(\text{e}(F\sigma) = M\) *then* \(\text{e}(\text{e}_a(F)\sigma) = M.\)
Symbolic Operational Semantics

- How to handle constraints with restricted names?
 - We add (top-level) restriction to the transition constraints.

\[
P \xrightarrow[\mu]{(\nu \tilde{c}) \phi} P' \quad (\nu a) P \xrightarrow[\mu]{(\nu a \tilde{c}) \phi} (\nu a) P'
\]

if \(n(\mu, \tilde{c}) \not\ni a \in n(\phi) \)

- Input variables may be used in channel expressions.
 - Solution: Communication also introduces constraints.

\[
P F(x) \rightarrow (\nu \tilde{c}) \phi \quad Q (\nu \tilde{b}) F' G \rightarrow (\nu \tilde{d}) \psi
\]

\[
P \parallel Q \xrightarrow[\tau]{(\nu \tilde{b} \tilde{c} \tilde{d}) \left[F=F' \right]} (\nu \tilde{b})(P' \{G/x\} | Q') \quad \text{if } \ldots
\]

Lemma

\[P \xrightarrow[\mu]{\phi} P' \text{ iff } \exists \phi, \tilde{c} \text{ such that } P \xrightarrow[\mu]{(\nu \tilde{c}) \phi} P' \text{ and } [[\phi]].\]
Symbolic Environments

- Environments se track knowledge and constraints.
- $se := (th, tv, ((\nu C) \phi, (\nu D) \psi))$, where
 - $th : \mathcal{E} \times \mathcal{E} \rightarrow \mathbb{N}$ and $tv : \mathcal{V} \rightarrow \mathbb{N}$ give the knowledge available to instantiate input variables;
 - ϕ and ψ are accumulated transition constraints; C, D are fresh names.
- $\sigma, \rho : \text{dom}(tv) \rightarrow \mathcal{M}$ instantiate se if they
 - are generatable from the knowledge; and
 - satisfy the accumulated constraints.

We then get an instance $C^B_{\sigma, \rho}(th)$ of se.

- se is consistent if all instances of se are consistent and ϕ and ψ are simultaneously satisfied.
- $\{se_i\}_{i \in I}$ is a decomposition of se if every instantiation of se is instantiation of some se_i and all se_i are consistent.
Symbolic Bisimulation

- An environment-sensitive relation
 \(\text{se} \vdash P \sim_s Q \).

- When to simulate a transition \(P \xrightarrow{\mu_s} P' \):
 - Detectable – additional knowledge constraint.
 - Possible – satisfiability of constraints.

- Find a consistent decomposition
 of the resulting constraint \(\phi \land \phi' \).

- For each environment in the decomposition,
 find a matching simulating transition
 \(Q \xrightarrow{\psi'} Q' \)
such that \(\psi' \) is true in all instantiations.
Symbolic Bisimulation

- Assume that \((th, tw, ((\nu C) \phi, (\nu D) \psi)) \vdash P \; \mathcal{R} \; Q\) and
 \[P \xrightarrow{(\nu \tilde{c}) \; F(x)} P' \]
 with \(\{\tilde{c}, \tilde{c}'\} \cap n_1(se) = \emptyset\) and \(x \notin \text{dom}(tv)\).

- If there are \(\sigma, \rho, B, y\) with \(se \vdash \sigma \leftrightarrow_B \rho\),
 - \(\{\tilde{c}\} \cup \text{fn}(P, Q)) \cap B = \emptyset\), \([\phi' \sigma]\)
 - \(e(F\sigma) \in \pi_1(C^B_{\sigma, \rho}(th))\) and \(y \notin (\text{dom}(tv) \cup \{x\})\) we let
 \[se := (th, tv', ((\nu C \cup \{\tilde{c}, \tilde{c}'\}) \phi \land \phi' \land [y = F], (\nu D) \psi)) \]
 where \(tv' = tv \cup \{x \mapsto t+1, y \mapsto t+1\}\).

- then there is a consistent decomposition \(\{se_i\}_{i \in I}\) of \(se\) such that for each \(i \in I\),

- there are \(\tilde{e}, \tilde{e}'\), \(\psi', Q', F'\) with
 \[Q \xrightarrow{(\nu \tilde{e}) \; F'(x)} Q' \]
 \(\{\tilde{e}, \tilde{e}'\} \cap (n_2(se) \cup B) = \emptyset\),
 \(se'_i \vdash tt \leftrightarrow \psi' \land [y = F']\) and
 \(se'_i \vdash P' \; \mathcal{R} \; Q'\) where
 \(se'_i = (th, tv', ((\nu C \cup \{\tilde{c}, \tilde{c}'\}) \phi_i, (\nu D \cup \{\tilde{e}, \tilde{e}'\}) \psi_i))\).
Soundness

Theorem

If $se \vdash P \sim_s Q$ then $h \vdash P \sigma \sim_h Q \rho$ for any instantiation (σ, ρ) with instance h.

- Any transition of an instantiation that must be simulated has a corresponding transition that must be simulated symbolically.
- Any symbolically simulated transition can always be concretely simulated (given a detected concrete transition) preserving the “instantiation” relationship.
Completeness

Theorem

If $h \vdash P\sigma \sim_h Q\rho$ for all instantiations (σ, ρ) of se, then $se \vdash P \sim_s Q$.

- For every transition of P, decompose into all corresponding instantiations and simulate according to \sim_h.

Finding a Decomposition

- Can one always compute a decomposition?
 - NO: using replication, we can simulate Turing machines.

- Is there always a finite decomposition?
 - NO (dependent on the logic at the level of environments).
Example

\[\Sigma = (\{s, p\}, \{s \mapsto 1, p \mapsto 1\})\] with the rule \(p(s(x)) \rightarrow x\).

- \(P\) either diverges or behaves as \(P'\), where
 - \(P'\) decrements its input to 0 (a name) and signals success.

- \(Q\) behaves as either \(Q_1\) or \(Q_2\):
 - \(Q_1\) diverges if the input is even, otherwise behaves as \(P'\).
 - \(Q_2\) diverges if the input is odd, otherwise behaves as \(P'\).

\[
P = a(x).\Omega + a(x).(\nu c) (P'(x) | !c(y).P'(y))
\]

\[
P'(x) = \overline{x}\langle a \rangle + \overline{c}\langle p(x) \rangle
\]

\[
\Omega = (\nu c) (\overline{c}\langle c \rangle | !c(z).\overline{c}\langle c \rangle)
\]

\[
Q = (\nu c) ((a(x).Q_1(x) + a(x).Q_2(x)) | !c(y).Q_2(y))
\]

\[
Q_1(x) = [x : \mathcal{N}] \Omega + \overline{c}\langle p(x) \rangle
\]

\[
Q_2(x) = \overline{x}\langle a \rangle + (\nu d) (\overline{d}\langle p(x) \rangle | d(z).Q_1(z))
\]
Leftovers - Constraints

- Possibility and detectability
 - Solved for negation-free formulas in a large class of msg languages [BB05].

- Symbolic consistency
 - Solved for negation-free formulas and subterm-convergent msg languages. [Bau07]
 - Would Constructor-Destructor languages help with negation?

- Environment decompositions (needed for completeness)
 - Finding a finite decomposition may be impossible/undecidable.
 - Possible to defer the choice of simulating transition?
The Bottom Line

1. Constructor-Destructor expression languages permit a smooth extension of classical spi.

2. Environment decompositions yield a complete symbolic bisimilarity.

3. Infinite decompositions may be needed unlike in the pi calculus.

Questions?
Bibliography

Michele Boreale, Rocco De Nicola, and Rosario Pugliese. Proof techniques for cryptographic processes.