Part 4: Buchi automata

102

Preview

Model-checking problem: [[K]] C [¢]] — how can we check this algorithmically?

(Historically) first approach: Translate /C into an LTL formula v x-, check whether
Wi — ¢ 1S a tautology. Problem: very inefficient.

Language-/automata-theoretic approach: [X] and [¢] are languages (of infinite
words).

Find a suitable class of automata for representing these languages.

Define suitable operations on these automata for solving the problem.

This is the approach we shall follow.

103

Blchi automata

A Blchi automaton is a tuple

B: (Z7 S) SO7A7 F)?

where:
> Is a finite alphabet;
S is a finite set of states;
So €S is an initial state;
ACSx>xXxS are transitions;
FCS are accepting states.
Remarks:

Definition and graphical representation like for finite automata.

However, Blchi automata are supposed to work on infinite words, requiring a
different acceptance condition.

104

Example

Graphical representation of a Blichi automaton:

—~(E)——@ v

The components of this automaton are (=, S, s1, A, F), where:

e > ={a,b} (symbols on the edges)
e S=1{51,5} (circles)
® S (indicated by arrow)

o A ={(s1,a52),(52,b,52)} (edges)
o F= {5} (with double circle)

105

Language of a Buchi automaton

Let B= (%X, S, sg, A, F) be a Blchi automaton.

A run of B over an infinite word o € >“ is an infinite sequences of states p € S¥
where p(0) = sg and (p(i),c(i),p(i+ 1)) € A fori > 0.

We call p accepting iff p(i) € F for infinitely many values of /.

l.e., p infinitely often visits accepting states.
(By the pigeon-hole principle: at least one accepting state is visited infinitely often.)

o € 2 is accepted by B iff there exists an accepting run over o in B.

The language of B, denoted L(B), is the set of all words accepted by /5.

106

Blchi automata: examples

“infinitely often b” ‘\/

“infinitely often ab” \/

107

BlUchi automata and LTL

Let AP be a set of atomic propositions.
A Buchi automaton with alphabet DAP accepts a sequence of valuations.

Claim: For every LTL formula ¢ there exists a Blchi automaton B such that

L(B) = [¢].

(We shall prove this claim later.)

Examples: Fp, Gp, GFp, Gp—Fq), FGp

108

Example automaton for G(p — F q), with AP = {p, q}.

{},{q,q} {}(,{%}
{p}
()

{a}.{p.q}

Alternatively we can label edges with formulae of propositional logic; in this case,
a formula F stands for all elements of [F]. In this case:

pvQ (—I%
() pAg
©,

109

Operations on Bichi automata

The languages accepted by Blchi automata are also callled w-regular
languages.

Like the usual regular languages, w-regular languages are also closed under
Boolean operations.

l.e., if £1 and L, are w-regular, then so are

L1 U Lo, L1 N0 Lo, E%.

We shall now define operations that take Blchi automata accepting some
languages £1 and £, and produce automata for their union or intersection.

In the following slides we assume B = (X, S, sg, A1, F) and
B = (X, T,ty, Ar, G) (With SN T = ().

110

Union

“Juxtapose” 31 and B> and add a new initial state.

In other words, the automaton B = (X, SUTU{u}, u, A{UALUAy, FUG)
accepts L(B1) U L(B>), where

uis a “fresh” state (u ¢ SU T);

Ay={(u,0,8) | (s9,0,8) € A1 }U{(u,o,t)]| (lg,o,1) € D> }.

111

Intersection | (a special case)

We first consider the case where all states in B, are accepting, i.e. G=T.

ldea: Construct a cross-product automaton (like for FA), check whether F is
visited infinitely often.

let B= (X, Sx T, (sp,lp), A, Fx T),where

A={(st),a(s,t))|aeZ, (s,as) e, (t,at) e n>}.

Then: £(B) = £(B1) N L(B5).

112

Intersection |l (the general case)

Principle: We again construct a cross-product automaton.

Problem: The acceptance condition needs to check whether both accepting sets
are visited infinitely often.

ldea: create two copies of the cross product.

— In the first copy we wait for a state from F.
— In the second copy we wait for a state from G.

— In both copies, once we’ve found one of the states we're looking for, we
switch to the other copy.

We will choose the acceptance condition in such a sway that an accepting run
switches back and forth between the copies infinitely often.

113

Let B= (>, U, u, A, H), where

U=SxTx{1,2}, u=(sg,1y,1),

({s,t,1),a,(s',t',1)) € A

({s,t,1),a,(s,t',2)) € A

({s,t,2),a,(s',t',2)) € A

(s, t,2),a,(s,t',1)) € A
Remarks:

iff
Iff
iff
Iff

The automaton starts in the first copy.

(s,a,8) € A1,
(s,a,8) € Aq,
(s,a,8") € A1,
(s,a,8) € Aq,

H=FxTx{1}

(t,a t') € Ao,
(t,a,t') € Ao,
(t,a, t') € Ao,
(t,a,t') € Aoy,

We could have chosen other acceptance conditions such as S x G x {2}.

The construction can be generalized to intersecting n automata.

s¢F
seF
t¢ G
te G

114

Intersection: example

115

Complement

Problem: Given B1, construct B with £(B) = £(B1)°.

Such a construction is possible (but rather complicated). We will not require it for
the purpose of this course.

Additional literature:

Wolfgang Thomas, Automata on Infinite Objects,
Chapter 4 in Handbook of Theoretical Computer Science,

lgor Walukiewicz, lecture notes on Automata and Logic, chapter 3,

www.labri.fr/Perso/ "igw/Papers/igw—eefss0l.ps

116

Deterministic BlUchi automata

For finite automata (known from reqgular language theory), it is known that every
language expressible by a finite automaton can also be expressed by a
deterministic automaton, i.e. one where the transition relation A is a function

Sx>X —8S.
Such a procedure does not exist for Bichi automata.

In fact, there is no deterministic Blchi automaton accepting the same language

as the automaton below:
a,b b

o)
“Only finitely many as.” s0

117

Proof: Let £ be the language of infinite words over {a, b} containing only finitely
many as. Assume that a deterministic Bichi automaton B with £(B) = L exists,
and let n be the number of states in B.

We have b¥ € L, so let a1 be the (unique) accepting run for b*. Suppose that an
accepting state is first reached after nq letters, i.e. s1 := «1(n7) is the first
accepting state in «a.

We now regard the word b ab®, which is still in £, therefore accepted by some
run a». Since B is deterministic, vy and a» must agree on the first nq states.
Now, watch for the second occurrence of an accepting state in ao, i.e. let

s> := a»(n1 + 1 + n») be an accepting state for n, minimal. Then, s; #= s>
because otherwise there would be a loop around an accepting state containing a
transition with an a.

We now repeat the argument for b1 ab™2ab*, derive the existence of a third
distinct state, etc. After doing this n + 1 times, we conclude that B must have
more than n distinct states, a contradiction.

118

Preview

LTL

BA

We desire to translate LTL formulae into BlUchi automata.

119

Preview

LTL

gener. BA

BA

Detour: We translate them into so-called generalized Bluchi automata (GBA).

120

Preview

LTL

GBA accept the same class of languages as BA.

~
~
-
L]
L}
-
~
~
..
L]
L}

gener. BA

A

Y

BA

121

Preview

LTL

Translation from BA to LTL not possible in general.

...
-~
L}
-
-~

gener. BA

A

Y

BA

122

Preview

LTL

L]
...
L]
-~
L

We shall proceed in the order indicated above.

gener. BA

A

(1)

Y

BA

123

Generalized Blchi automata

A generalized Blchi automaton (GBA) isatuple G = (X, S, sg, A, F).

There is only one difference w.r.t. normal BA:

The acceptance condition F C 25 is a set of sets of states.

E.g.,let F ={Fq,..., Fn}. Arun p of G is called accepting iff for every F;
(i =1,...,n), pvisits infinitely many states of F;.

Put differently: many acceptance conditions at once.

124

GBA: Example

For the GBA shown below, let 7 = { {qo0}, {91} }

a
b

N
O

d

OBL

Language of the automaton: “infinitely often a and infinitely often b”
Note: In general, the acceptance conditions need not be pairwise disjoint.

Advantage: GBA may be more succinct than BA.

125

Translations BA «— GBA

GBA accept the same class of languages as BA.

l.e., for every BA there is a GBA accepting the same language, and vice versa.

Part 1 of the claim (BA — GBA):

Let B= (X, S, sg, A, F) be a BA.

Then G = (X, S, 50, A, {F}) isa GBA with £(G) = L(B).

126

Part 2 of the claim (GBA — BA):

Let G = (X, S, 50, A, {F1,...,Fn}) be a GBA.

We construct B = (X, §', s, A', F) as follows:

S=8Sx{1,....n

so = (S0, 1)

F=F x{1}

((s,i),a,(s, k) e A'iff1 <i<n, (s,85)ecA
and k — I ifs ¢ F;

(imodn)4+1 ifseF;
Then we have £(B) = L£(G). (Idea: n-fold intersection)

127

GBA — BA: example

The BA corresponding to the previous GBA (“infinitely often a and infinitely often
b”) is as follows:

('%

a q1,1

128

Remark: Multiple initial states

Our definitions of BA and GBA require exactly one initial state.

For the translation LTL — BA it will be convenient to use GBA with multiple initial
states.

Intended meaning: A word is regarded as accepted if it is accepted starting
from any initial state.

Obviously, every (G)BA with multiple initial states can easily be converted into a
(G)BA with just one initial state.

129

Part 5: LTL and Buchi automata

130

Overview

In this part, we shall solve the following problem:

Given an LTL formula ¢ over AP, we shall construct a GBA G (with multiple
initial states) such that £(G) = [[¢]].

(G can then be converted to a normal BA.)

Remarks:

Analogous operation for regular languages: reg. expression — NFA

The crucial difference: it is not possible to provide an LTL — BA translation in
modular fashion.

The automaton may have to check multiple subformulae at the same time
(€.9.:(GFp) — (G(@g—Fr))or(pUq) Ur).

131

More remarks:

The construction shown in the following is comparatively simplistic.
It will produce rather suboptimal automata (size always exponential in |¢|).

Obviously, this is quite inefficient, and not meant to be done by pen and
paper, only as a “proof of concept”.

There are far better translation procedures but the underlying theory is rather
beyond the scope of the course.

Interesting, on-going research area!

132

Structure of the construction

1. We first convert ¢ into a certain normal form.

2. States will be “responsible” for some set of subformulae.

3. The transition relation will ensure that “simple” subformulae such as p or X p
are satisfied.

4. The acceptance condition will ensure that U-subformulae are satisfied.

133

Negation normal form

Let AP be a set of atomic propositions. The set of NNF formulae over AP is
inductively defined as follows:

If p € AP then p and —p are NNF formulae.
(Remark: Negations occur exclusively in front of atomic propositions.)

If »1 and ¢- are NNF formulae then so are
P1V @2, P1 NP2, X1, @1 Udn, ¢1 R po.

Claim: For every LTL formula ¢ there is an equivalent NNF formula:

“(p1R¢p2) = 791U~ (1 Udo) = —¢1 R0
—(P1 A p2) = o1V o —(P1V P2) = —o1 Ao

134

NNF: Example

Translation into an NNF formula:

G(p—Fq) = -F-(p—FQ)

—~(true U ~(p — FQq))
—-true R (p — F Q)
false R (—p V F Q)

false R (—-p V (true U q))

Remark: Because of this, we shall henceforth assume that the LTL formula in the
translation procedure is given in NNF.

135

Subformulae

Let ¢ be an NNF formula. The set Sub(¢) is the smallest set satisfying:

¢ € Sub(®);
true € Sub(¢);

if p1 € Sub(p) then —¢1 € Sub(¢), and vice versa;
if X 91 € Sub(o) then 1 € Sub(o);

if o1V oo € Sub(o) then ¢1, > € Sub(p);

if o1 A @ € Sub(o) then ¢1, P> € Sub(p);

if 1 U ¢o € Sub(¢) then 1, po> € Sub(op);

if 91 R ¢ € Sub(p) then ¢1, d> € Sub(op).

Note: We have |Sub(¢)| = O(|¢|) (one subformula per syntactic element).

136

Consistent sets

Recall item 2 of the construction:

Every state will be labelled with a subset of Sub(¢).

|ldea: A state labelled by set M will accept a sequence iff it satisfies every single
subformula contained in M and violates every single subformula contained in
Sub(p) \ M.

For this reason, we will a priori exclude some sets M which would obviously lead
to empty languages.

The other states will be called consistent.

137

Definition: We call a set M C Sub(¢) consistent if it satisfies the following
conditions:

true e M
if o1 € Sub(¢) then —=¢p1 € M gdw. ¢p1 ¢ M,;
if o1 A o € Sub(o) then ¢1 A ¢po € M iff 1 € M and ¢ € M;

if 1V ¢po € Sub(p) then ¢1 VvV oo € Miff 1 € M or ¢ € M.

By CS(¢) we denote the set of all consistent subsets of Sub(¢).

138

Translation (1)

Let ¢ be an NNF formulaand G = (X, S, Sp, A, F) be a GBA such that:

5 — 2AP
(i.e. the valuations over AP)

S=C5(¢)
(I.e. every state is a consistent set)

So={MecS|¢pc M}
(i.e. the initial states admit sequences satisfying ¢)

A and F: see next slide

139

Translation (2)

Transitions: (M, o, M") € A iff o = M N AP and:

— if X ¢1 € Sub(¢) then X ¢1 € Miff p1 € M';

— ifp1 Uy € S’U,b((b) then 1 U o € M
iff oo € M or (p1 € Mand ¢1 U ¢po € M');

— if o1 R o € Sub(¢) then vy R o € M
iff 1 A po> € Mor (po € M and 1 R ¢ € M').

Acceptance condition:

JF contains a set £, for every subformula « of the form ¢1 U ¢, where

Fp={Mec CS(¢) | ¢2€ M or =(¢1 U o) € M}.

140

Translation: Example 1

¢=XPp

{}

This GBA has got two initial states and the acceptance condition 7 =), i.e. every infinite run
is accepting. (Negated Formulas omitted from state labels.)

141

Translation: Example 2

¢=pUq

GBA with F = {{so, s1, sS4, S5, S, S7} }, transition labels also omitted.

142

Proof of correctness

We want to prove the following:

o€ L(G) gdw. o € [[¢]

To this aim, we shall prove the following stronger property:

Let o be a sequence of consistent sets (i.e., states of G)
and let o be a sequence of valuations over AP.

« is an accepting run of G over o
iff o € [y] foralli > 0and vy € a(i).

The desired proof then follows from the choice of initial states.

143

Correctness (2)

Remark: By construction, we have o (i) = (i) N AP for all i > O.

Proof via structural induction over :

foryYy =pandy = —pif p € AP:
obvious since o' € [[p] iff p € o (i) iff p € (V).

for ¢1 VvV 15 and 1 A 15 follows from consistency of «(i) and from the
induction hypothesis for)1 and 5, resp.

for X 1 : follows from the construction of A and induction hypothesis for 1.

144

Correctness (3)

for b =11 R o:

Follows from the construction of A, the recursion equation for R and the
induction hypothesis.

for o =11 U 1o:

Analogous to R, but additionally we must ensure that 1> € a(k) for some
k > i. Assume that this is not the case, then we have v1 U v» € «a(k) for all

k > i. However, none of these states is in F,, therefore o cannot be
accepting, which is a contradiction.

145

Complexity of the translation

The translation procedure produces an automaton of size O (2121, for a formula

®.

Question: Is there a better translation procedure?

146

Answer 1: No (not in general). There exist formulae for which any Blchi
automaton has necessarily exponential size.

Example: The following LTL formula over {pq, . .., pn—1} simulates an n-bit
counter.

n—1

G(po ¥ X Po) N /_\ G ((Pi% XP/) = (pi—l A ﬂXP/—1)>
i=1

The formula has size ©(n). Obviously, any automaton for this formula must have
at least 2" states.

147

