
Part 4: Büchi automata

102

Preview

Model-checking problem: [[K]] ⊆ [[φ]] – how can we check this algorithmically?

(Historically) first approach: Translate K into an LTL formula ψK, check whether
ψK → φ is a tautology. Problem: very inefficient.

Language-/automata-theoretic approach: [[K]] and [[φ]] are languages (of infinite
words).

Find a suitable class of automata for representing these languages.

Define suitable operations on these automata for solving the problem.

This is the approach we shall follow.

103

Büchi automata

A Büchi automaton is a tuple

B = (Σ,S, s0,∆,F),

where:

Σ is a finite alphabet;

S is a finite set of states;

s0 ∈ S is an initial state;

∆ ⊆ S ×Σ× S are transitions;

F ⊆ S are accepting states.

Remarks:

Definition and graphical representation like for finite automata.

However, Büchi automata are supposed to work on infinite words, requiring a
different acceptance condition.

104

Example

Graphical representation of a Büchi automaton:

s2s1 a b

The components of this automaton are (Σ,S, s1,∆,F), where:

• Σ = {a, b} (symbols on the edges)

• S = {s1, s2} (circles)

• s1 (indicated by arrow)

• ∆ = {(s1, a, s2), (s2, b, s2)} (edges)

• F = {s2} (with double circle)

105

Language of a Büchi automaton

Let B = (Σ,S, s0,∆,F) be a Büchi automaton.

A run of B over an infinite word σ ∈ Σω is an infinite sequences of states ρ ∈ Sω

where ρ(0) = s0 and (ρ(i), σ(i), ρ(i + 1)) ∈ ∆ for i ≥ 0.

We call ρ accepting iff ρ(i) ∈ F for infinitely many values of i .

I.e., ρ infinitely often visits accepting states.
(By the pigeon-hole principle: at least one accepting state is visited infinitely often.)

σ ∈ Σω is accepted by B iff there exists an accepting run over σ in B.

The language of B, denoted L(B), is the set of all words accepted by B.

106

Büchi automata: examples

“infinitely often b” q0 q1

a
b

b

a

“infinitely often ab” q0 q1

a,b
a

b

107

Büchi automata and LTL

Let AP be a set of atomic propositions.

A Büchi automaton with alphabet 2AP accepts a sequence of valuations.

Claim: For every LTL formula φ there exists a Büchi automaton B such that
L(B) = [[φ]].

(We shall prove this claim later.)

Examples: F p, G p, GF p, G(p → F q), FG p

108

Example automaton for G(p → F q), with AP = {p, q}.

q1q0

{},{q},{p,q}
{p}

{q},{p,q}

{},{p}

Alternatively we can label edges with formulae of propositional logic; in this case,
a formula F stands for all elements of [[F]]. In this case:

q

q

q1q0

p q

p q

109

Operations on Büchi automata

The languages accepted by Büchi automata are also callled ω-regular
languages.

Like the usual regular languages, ω-regular languages are also closed under
Boolean operations.

I.e., if L1 and L2 are ω-regular, then so are

L1 ∪ L2, L1 ∩ L2, Lc
1.

We shall now define operations that take Büchi automata accepting some
languages L1 and L2 and produce automata for their union or intersection.

In the following slides we assume B1 = (Σ,S, s0,∆1,F) and
B2 = (Σ,T , t0,∆2,G) (with S ∩ T = ∅).

110

Union

“Juxtapose” B1 and B2 and add a new initial state.

In other words, the automaton B = (Σ, S ∪T ∪{u}, u, ∆1∪∆2∪∆u, F ∪G)

accepts L(B1) ∪ L(B2), where

u is a “fresh” state (u /∈ S ∪ T);

∆u = { (u, σ, s) | (s0, σ, s) ∈ ∆1 } ∪ { (u, σ, t) | (t0, σ, t) ∈ ∆2 }.

111

Intersection I (a special case)

We first consider the case where all states in B2 are accepting, i.e. G = T .

Idea: Construct a cross-product automaton (like for FA), check whether F is
visited infinitely often.

Let B = (Σ, S × T , 〈s0, t0〉, ∆, F × T), where

∆ = { (〈s, t〉, a, 〈s′, t ′〉) | a ∈ Σ, (s, a, s′) ∈ ∆1, (t , a, t ′) ∈ ∆2 }.

Then: L(B) = L(B1) ∩ L(B2).

112

Intersection II (the general case)

Principle: We again construct a cross-product automaton.

Problem: The acceptance condition needs to check whether both accepting sets
are visited infinitely often.

Idea: create two copies of the cross product.

– In the first copy we wait for a state from F .

– In the second copy we wait for a state from G.

– In both copies, once we’ve found one of the states we’re looking for, we
switch to the other copy.

We will choose the acceptance condition in such a sway that an accepting run
switches back and forth between the copies infinitely often.

113

Let B = (Σ,U, u,∆,H), where

U = S × T × {1,2}, u = 〈s0, t0,1〉, H = F × T × {1}

(〈s, t ,1〉, a, 〈s′, t ′,1〉) ∈ ∆ iff (s, a, s′) ∈ ∆1, (t , a, t ′) ∈ ∆2, s /∈ F

(〈s, t ,1〉, a, 〈s′, t ′,2〉) ∈ ∆ iff (s, a, s′) ∈ ∆1, (t , a, t ′) ∈ ∆2, s ∈ F

(〈s, t ,2〉, a, 〈s′, t ′,2〉) ∈ ∆ iff (s, a, s′) ∈ ∆1, (t , a, t ′) ∈ ∆2, t /∈ G

(〈s, t ,2〉, a, 〈s′, t ′,1〉) ∈ ∆ iff (s, a, s′) ∈ ∆1, (t , a, t ′) ∈ ∆2, t ∈ G

Remarks:

The automaton starts in the first copy.

We could have chosen other acceptance conditions such as S × G × {2}.

The construction can be generalized to intersecting n automata.

114

Intersection: example
a

b
b

a

a
b

b

a

s0 s1 t0 t1

B1 B2

s0,t0,1 s1,t1,2

s0,t0,2 s1,t1,1

a

a

b

b

a b

b a

B1 x B2

115

Complement

Problem: Given B1, construct B with L(B) = L(B1)
c.

Such a construction is possible (but rather complicated). We will not require it for
the purpose of this course.

Additional literature:

Wolfgang Thomas, Automata on Infinite Objects,
Chapter 4 in Handbook of Theoretical Computer Science,

Igor Walukiewicz, lecture notes on Automata and Logic, chapter 3,
www.labri.fr/Perso/˜igw/Papers/igw-eefss01.ps

116

Deterministic Büchi automata

For finite automata (known from regular language theory), it is known that every
language expressible by a finite automaton can also be expressed by a
deterministic automaton, i.e. one where the transition relation ∆ is a function
S ×Σ → S.

Such a procedure does not exist for Büchi automata.

In fact, there is no deterministic Büchi automaton accepting the same language
as the automaton below:

“Only finitely many a s.”

ba,b

b
s0 s1

117

Proof: Let L be the language of infinite words over {a, b} containing only finitely
many as. Assume that a deterministic Büchi automaton B with L(B) = L exists,
and let n be the number of states in B.

We have bω ∈ L, so let α1 be the (unique) accepting run for bω. Suppose that an
accepting state is first reached after n1 letters, i.e. s1 := α1(n1) is the first
accepting state in α1.

We now regard the word bn1abω, which is still in L, therefore accepted by some
run α2. Since B is deterministic, α1 and α2 must agree on the first n1 states.
Now, watch for the second occurrence of an accepting state in α2, i.e. let
s2 := α2(n1 + 1 + n2) be an accepting state for n2 minimal. Then, s1 6= s2
because otherwise there would be a loop around an accepting state containing a
transition with an a.

We now repeat the argument for bn1abn2abω, derive the existence of a third
distinct state, etc. After doing this n + 1 times, we conclude that B must have
more than n distinct states, a contradiction.

118

Preview

LTL

BA

We desire to translate LTL formulae into Büchi automata.

119

Preview

LTL

gener. BA

BA

Detour: We translate them into so-called generalized Büchi automata (GBA).

120

Preview

LTL

gener. BA

BA

GBA accept the same class of languages as BA.

121

Preview

LTL

gener. BA

BA

Translation from BA to LTL not possible in general.

122

Preview

(1)LTL

(3)

gener. BA

BA

(2)

We shall proceed in the order indicated above.

123

Generalized Büchi automata

A generalized Büchi automaton (GBA) is a tuple G = (Σ,S, s0,∆,F).

There is only one difference w.r.t. normal BA:

The acceptance condition F ⊆ 2S is a set of sets of states.

E.g., let F = {F1, . . . ,Fn}. A run ρ of G is called accepting iff for every Fi
(i = 1, . . . , n), ρ visits infinitely many states of Fi .

Put differently: many acceptance conditions at once.

124

GBA: Example

For the GBA shown below, let F = { {q0}, {q1} }.

a
b

b

a

q0 q1

Language of the automaton: “infinitely often a and infinitely often b”

Note: In general, the acceptance conditions need not be pairwise disjoint.

Advantage: GBA may be more succinct than BA.

125

Translations BA ↔ GBA

GBA accept the same class of languages as BA.

I.e., for every BA there is a GBA accepting the same language, and vice versa.

Part 1 of the claim (BA → GBA):

Let B = (Σ,S, s0,∆,F) be a BA.

Then G = (Σ,S, s0,∆, {F}) is a GBA with L(G) = L(B).

126

Part 2 of the claim (GBA → BA):

Let G = (Σ,S, s0,∆, {F1, . . . ,Fn}) be a GBA.

We construct B = (Σ,S′, s′0,∆
′,F) as follows:

S′ = S × {1, . . . , n}

s′0 = (s0,1)

F = F1 × {1}

((s, i), a, (s′, k)) ∈ ∆′ iff 1 ≤ i ≤ n, (s, a, s′) ∈ ∆

and k =

i if s /∈ Fi
(i mod n) + 1 if s ∈ Fi

Then we have L(B) = L(G). (Idea: n-fold intersection)

127

GBA → BA: example

The BA corresponding to the previous GBA (“infinitely often a and infinitely often
b”) is as follows:

b

b

q0,1 q1,1

q0,2 q1,2
b

a

a

a

b

a

128

Remark: Multiple initial states

Our definitions of BA and GBA require exactly one initial state.

For the translation LTL → BA it will be convenient to use GBA with multiple initial
states.

Intended meaning: A word is regarded as accepted if it is accepted starting
from any initial state.

Obviously, every (G)BA with multiple initial states can easily be converted into a
(G)BA with just one initial state.

129

Part 5: LTL and Büchi automata

130

Overview

In this part, we shall solve the following problem:

Given an LTL formula φ over AP, we shall construct a GBA G (with multiple
initial states) such that L(G) = [[φ]].

(G can then be converted to a normal BA.)

Remarks:

Analogous operation for regular languages: reg. expression → NFA

The crucial difference: it is not possible to provide an LTL → BA translation in
modular fashion.

The automaton may have to check multiple subformulae at the same time
(e.g.: (GF p) → (G(q → F r)) or (p U q) U r).

131

More remarks:

The construction shown in the following is comparatively simplistic.

It will produce rather suboptimal automata (size always exponential in |φ|).

Obviously, this is quite inefficient, and not meant to be done by pen and
paper, only as a “proof of concept”.

There are far better translation procedures but the underlying theory is rather
beyond the scope of the course.

Interesting, on-going research area!

132

Structure of the construction

1. We first convert φ into a certain normal form.

2. States will be “responsible” for some set of subformulae.

3. The transition relation will ensure that “simple” subformulae such as p or X p
are satisfied.

4. The acceptance condition will ensure that U-subformulae are satisfied.

133

Negation normal form

Let AP be a set of atomic propositions. The set of NNF formulae over AP is
inductively defined as follows:

If p ∈ AP then p and ¬p are NNF formulae.
(Remark: Negations occur exclusively in front of atomic propositions.)

If φ1 and φ2 are NNF formulae then so are

φ1 ∨ φ2, φ1 ∧ φ2, Xφ1, φ1 U φ2, φ1 R φ2.

Claim: For every LTL formula φ there is an equivalent NNF formula:

¬(φ1 R φ2) ≡ ¬φ1 U ¬φ2 ¬(φ1 U φ2) ≡ ¬φ1 R ¬φ2

¬(φ1 ∧ φ2) ≡ ¬φ1 ∨ ¬φ2 ¬(φ1 ∨ φ2) ≡ ¬φ1 ∧ ¬φ2

¬Xφ ≡ X¬φ ¬¬φ ≡ φ

134

NNF: Example

Translation into an NNF formula:

G(p → F q) ≡ ¬F¬(p → F q)

≡ ¬(true U ¬(p → F q))

≡ ¬true R (p → F q)

≡ false R (¬p ∨ F q)

≡ false R (¬p ∨ (true U q))

Remark: Because of this, we shall henceforth assume that the LTL formula in the
translation procedure is given in NNF.

135

Subformulae

Let φ be an NNF formula. The set Sub(φ) is the smallest set satisfying:

φ ∈ Sub(φ);

true ∈ Sub(φ);

if φ1 ∈ Sub(φ) then ¬φ1 ∈ Sub(φ), and vice versa;

if Xφ1 ∈ Sub(φ) then φ1 ∈ Sub(φ);

if φ1 ∨ φ2 ∈ Sub(φ) then φ1, φ2 ∈ Sub(φ);

if φ1 ∧ φ2 ∈ Sub(φ) then φ1, φ2 ∈ Sub(φ);

if φ1 U φ2 ∈ Sub(φ) then φ1, φ2 ∈ Sub(φ);

if φ1 R φ2 ∈ Sub(φ) then φ1, φ2 ∈ Sub(φ).

Note: We have |Sub(φ)| = O(|φ|) (one subformula per syntactic element).

136

Consistent sets

Recall item 2 of the construction:

Every state will be labelled with a subset of Sub(φ).

Idea: A state labelled by set M will accept a sequence iff it satisfies every single
subformula contained in M and violates every single subformula contained in
Sub(φ) \M.

For this reason, we will a priori exclude some sets M which would obviously lead
to empty languages.

The other states will be called consistent.

137

Definition: We call a set M ⊂ Sub(φ) consistent if it satisfies the following
conditions:

true ∈ M

if φ1 ∈ Sub(φ) then ¬φ1 ∈ M gdw. φ1 /∈ M;

if φ1 ∧ φ2 ∈ Sub(φ) then φ1 ∧ φ2 ∈ M iff φ1 ∈ M and φ2 ∈ M;

if φ1 ∨ φ2 ∈ Sub(φ) then φ1 ∨ φ2 ∈ M iff φ1 ∈ M or φ2 ∈ M.

By CS(φ) we denote the set of all consistent subsets of Sub(φ).

138

Translation (1)

Let φ be an NNF formula and G = (Σ,S,S0,∆,F) be a GBA such that:

Σ = 2AP

(i.e. the valuations over AP)

S = CS(φ)

(i.e. every state is a consistent set)

S0 = {M ∈ S | φ ∈ M }
(i.e. the initial states admit sequences satisfying φ)

∆ and F : see next slide

139

Translation (2)

Transitions: (M, σ,M ′) ∈ ∆ iff σ = M ∩ AP and:

– if Xφ1 ∈ Sub(φ) then Xφ1 ∈ M iff φ1 ∈ M ′;

– if φ1 U φ2 ∈ Sub(φ) then φ1 U φ2 ∈ M
iff φ2 ∈ M or (φ1 ∈ M and φ1 U φ2 ∈ M ′);

– if φ1 R φ2 ∈ Sub(φ) then φ1 R φ2 ∈ M
iff φ1 ∧ φ2 ∈ M or (φ2 ∈ M and φ1 R φ2 ∈ M ′).

Acceptance condition:

F contains a set Fψ for every subformula ψ of the form φ1 U φ2, where

Fψ = {M ∈ CS(φ) | φ2 ∈ M or ¬(φ1 U φ2) ∈ M }.

140

Translation: Example 1

φ = X p

{p, X p} {p}

{X p} { }

{ } {p}
{p}

{ }

{p}

{ }

{p}

{ }

This GBA has got two initial states and the acceptance condition F = ∅, i.e. every infinite run
is accepting. (Negated Formulas omitted from state labels.)

141

Translation: Example 2

φ ≡ p U q

{q}

{p}

{ }

{p, q}

{q, p U q}

{p, p U q}

{p U q}

{p, q, p U q}
s0

s1

s2

s3 s7

s6

s5

s4

GBA with F = {{s0, s1, s4, s5, s6, s7}}, transition labels also omitted.

142

Proof of correctness

We want to prove the following:

σ ∈ L(G) gdw. σ ∈ [[φ]]

To this aim, we shall prove the following stronger property:

Let α be a sequence of consistent sets (i.e., states of G)
and let σ be a sequence of valuations over AP.

α is an accepting run of G over σ
iff σi ∈ [[ψ]] for all i ≥ 0 and ψ ∈ α(i).

The desired proof then follows from the choice of initial states.

143

Correctness (2)

Remark: By construction, we have σ(i) = α(i) ∩ AP for all i ≥ 0.

Proof via structural induction over ψ:

for ψ = p and ψ = ¬p if p ∈ AP:
obvious since σi ∈ [[p]] iff p ∈ σ(i) iff p ∈ α(i).

for ψ1 ∨ ψ2 and ψ1 ∧ ψ2: follows from consistency of α(i) and from the
induction hypothesis for ψ1 and ψ2, resp.

for Xψ1: follows from the construction of ∆ and induction hypothesis for ψ1.

144

Correctness (3)

for ψ = ψ1 R ψ2:

Follows from the construction of ∆, the recursion equation for R and the
induction hypothesis.

for ψ = ψ1 U ψ2:

Analogous to R, but additionally we must ensure that ψ2 ∈ α(k) for some
k ≥ i . Assume that this is not the case, then we have ψ1 U ψ2 ∈ α(k) for all
k ≥ i . However, none of these states is in Fψ, therefore α cannot be
accepting, which is a contradiction.

145

Complexity of the translation

The translation procedure produces an automaton of size O(2|φ|), for a formula
φ.

Question: Is there a better translation procedure?

146

Answer 1: No (not in general). There exist formulae for which any Büchi
automaton has necessarily exponential size.

Example: The following LTL formula over {p0, . . . , pn−1} simulates an n-bit
counter.

G(p0 6↔ X p0) ∧
n−1∧
i=1

G

((
pi 6↔ X pi

)
↔
(
pi−1 ∧ ¬X pi−1

))

The formula has size O(n). Obviously, any automaton for this formula must have
at least 2n states.

147

