
An Introduction to log
�

eaver (v2.8)

Jean Goubault-Larrecq ��� �
� GIE Dyade, INRIA Rocquencourt � LSV, ENS Cachan

Domaine de Voluceau, BP 105 61, av. du président-Wilson
78153 Le Chesnay Cedex 94235 Cachan Cedex

September 20, 2001

Contents

1 Introduction 2

2 Architecture 3

3 First Steps: Detecting Repeated Mouse Problems in Linux 4
3.1 Log Format and Preprocessors . 5
3.2 Basic Record Matching . 6
3.3 Matching Rules . 7
3.4 Managing Overlaps: Shortest Matches, Synchronization 8
3.5 Refining Rules with Constraints . 9

4 Going Further: Loops, Flexible Variables, Checkpointing, and All That 11
4.1 Repeated Modprobe Problems in Linux . 11
4.2 Counting, Accumulating Information . 13
4.3 Modes of Operation, End of Files, Streaming and Checkpointing 16

5 How It Really Works 18
5.1 Basic Notions . 18
5.2 Thread Management . 21
5.3 Synchronized Rules and Merging Pids . 25
5.4 Anchored Signatures . 26

6 Signature Syntax 28

7 Writing Your Own Preprocessor 33

1

8 Frequently Asked Questions 33
8.1 I cannot manage to launch log � eaver, why? 33
8.2 log � eaver complains about . � field-name � : unknown field name,

what can I do? . 33
8.3 I have written a rule, but it never detects anything, although it really ought to,

what is the matter? . 33
8.4 My machine crashed, or the logw process got killed, while it was monitoring

some real-time stream of events, how do I recover from this? 35
8.5 Is it possible to add or remove rules from the signature file and have log � eaver

take the modifications into account? . 35
8.6 log � eaver uses a lot of memory. What should I do? 35
8.7 I have written a rule, but it never matches, or it matches unexpected series of

lines, is there a bug in log � eaver? . 36
8.8 Why is log � eaver complaining about ifs without elses? 37
8.9 I have written a constraint on dates as in Section 3.5 but log � eaver keeps gob-

bling up memory. What is happening? . 37
8.10 How do I interface log � eaver with logrotate or other log rotation mecha-

nisms? . 37
8.11 Is it possible to use a variable whose value will not be reported? 37
8.12 Can I have the values of a flexible variable printed without duplications? 37
8.13 Some line numbers repeat, or two instances of the same synchronized rule

overlap, what is the matter? . 37
8.14 Do I need spaces after command-line options, e.g., do I write -l./nwreadlog

or -l ./nwreadlog? . 38

1 Introduction

Keeping and managing event logs is a standard and fairly universal way of ensuring basic se-
curity, whether at the application, system or network level. In particular, it is a cornerstone of
intrusion detection, which relies on extracting useful information on potential or actual intruders
to react accordingly.

Analyzing logs, however, is hard. Detecting intrusion patterns by hand quickly becomes in-
feasible as logs grow. Most intrusion detection systems include filtering and counting mech-
anisms [Pax98, Roe99], but this is not enough in general to eliminate false positives, and
new mechanisms that attempt to detect combinations of patterns throughout the logs are re-
quired. To take an example from [Mou97], assume we would like to detect an intruder exploit-
ing an old sendmail bug on Unix. This attack requires the intruder to copy some shell to
/usr/spool/mail/root at a time where the latter does not exist, to set the setuid bit on it,
and send a fake e-mail message to root; on old implementations of mail systems, as soon as
root attempted to read his mail thereafter, the ownership of /usr/spool/mail/rootwas
simply switched to root, therefore making a setuid-bit copy of a shell available to the intruder.
Assume these events are logged. Detecting copies of shell files is a good clue that this attack or a

2

similar one is attempted, and detecting that a non-root user is changing setuid bits too, however
as a systems administrator we would like to be warned—automatically, if possible—only when
the same user does both. Reports of one action without the other are false positives, where we
are warned against a non-existent attack. Moreover, we might want to refine this by requiring
that an e-mail was indeed sent to root after these two events happened. So we are looking at
correlations between different entries in the log—the user has to be the same in each of the copy
and setuid events—, together with constraints on the order in which events occur in the log.

log � eaver is a log auditing tool. That is, it takes a log as input, and processes it according
to a signature file. The log is a list of events, like those produced by the syslog utility on Unix.
log � eaver can read from several log formats, however, because it relies on a pre-processor
to convert from several formats to a unique binary format that it understands (see Section 2).
Moreover, log � eaver can work both off-line—using a log that may have been produced days
ago—and on-line—detecting attacks as the log fills in. (Some call the latter mode of operation
streaming.)

The signature file states which kinds of events should be monitored and reported on.
log � eaver itself does not come with a standard library of attack signatures. The idea is that
log � eaver may be included in a bundle, where various security utilities, along with log � eaver
and one or several signature files, will be included. It is the responsibility of the packager to write
signatures. Administrators at clients’ sites may also change signatures, and in fact log � eaver
allows one to modify the set of signatures while log � eaver is running, i.e., without having to
stop it and relaunch it.

One of the main features of log � eaver is that it can filter, count and match regular expres-
sions, but also detect correlations between events (insisting that the same user does both actions
in the sendmail example above), while maintaining temporal relations (that the intruder copies
the shell before it sends an email to root, for example).

Note also that log � eaver is a generic tool, which takes a log and a signature file and reports
matches. While its typical application is in security, it is suited to any task that requires one to
reach for complex sequences of events in large lists of events. Typical alternative applications are
remote maintenance (detecting repeated failures, or correlated failures of hardware and software,
or failures of different machines at the same customer’s from lists of unsorted failures), or user
preference tracking for example.

As of today, log � eaver compiles and runs on Unix and Windows. It has been tested on
various Linux versions, and on Windows NT. More detailed information on the algorithms used
in log � eaver can be found in [RGL01].

2 Architecture

The log � eaver tool is named logw under Unix. It is invoked typically by calling logw with
the name of a preprocessor, whose role is to convert the log’s format into log � eaver’s own
standard format, with the name of a signature file, and the name of a log to analyze. A typical
command line is therefore:

logw -l � log-reader � -s � signature-file � � log �

3

Log
Pre-pro-
cessor

log eaver Report

Standar-

dized

binary

format

Signature

file

Any

format

Signatures

Figure 1: The log � eaver architecture

Usage: logw [-h] [-V] -s spec-file [-l log-reader] [-e [neofs]] [log-file]
[-c prefix] [-d [seconds]] [-r] [-b [seconds]] [-v [file]]

-h: print this help message
-V: print version and exit
-s spec-file: monitor specs as given in spec-file.
-l log-reader: use program log-reader as preprocessor for log-file
-e [neofs]: report neofs end-of-file fake records at end of input

(default 1)
-c prefix: checkpoint into and from prefix.ckp (default logweave)
-d [sec]: checkpoint every sec seconds (default 10)
-r: restart logw using last checkpoint file
-b [sec]: block on read at end of log-file, polling every sec

seconds (default 0)
-v [file]: verbose output to stderr [or file]

Figure 2: Command-line options

The architecture is as shown in Figure 1.
There are other command-line options to logw, which you can learn by calling logw -h.

This should give you something like Figure 2.
The separation between log � eaver and the preprocessor allows one to change the prepro-

cessor at will. This way, log � eaver accomodates log format changes independently from sig-
natures, which can remain the same.

3 First Steps: Detecting Repeated Mouse Problems in Linux

Let us start with a simple example, and consider the syslog file given in the log � eaver
distribution. (This is one of the standard log files, coming from one of my laptops, covering
three years of use.) Figure 3 shows an extract from this file, from line 27 to 33.

4

Jan 26 23:11:30 darkstar syslogd: exiting on signal 15
Jan 26 23:17:22 cecile syslogd: exiting on signal 15
Jan 26 23:20:16 cecile syslogd: exiting on signal 15
Jan 27 11:32:06 cecile syslogd: exiting on signal 15
Jan 27 12:23:14 cecile sendmail[103]: NOQUEUE: SYSERR(root):

/etc/sendmail.cf: line 0: cannot open: No such file or directory
Jan 27 13:00:31 cecile insmod: Initialization of busmouse failed
Jan 27 13:00:32 cecile kernel: Unable to handle kernel paging

request at virtual address c1005077

Figure 3: An extract from the syslog file

line date machine program pid comment

�
�

Jan 26, 23:11:30 “darkstar” “syslogd” � “exiting on signal 15”

�
�

Jan 26, 23:17:22 “cecile” “syslogd” � “exiting on signal 15”

�
�

Jan 26, 23:20:16 “cecile” “syslogd” � “exiting on signal 15”� � Jan 27, 11:32:06 “cecile” “syslogd” � “exiting on signal 15”�
� Jan 27, 12:23:14 “cecile” “sendmail” � �

�
“NOQUEUE: SYSERR(root): [. . .]”�

� Jan 27, 13:00:31 “cecile” “insmod” � “Initialization of busmo[. . .]”���
Jan 27, 13:00:32 “cecile” “kernel” � “Unable to handle kernel[. . .]”

Figure 4: An extract of the syslog file, as records

3.1 Log Format and Preprocessors

The format of syslog files on Linux is, as can be seen on the figure, a series of lines, with one
line per event. Each line starts with the date, e.g., Jan 26 23:11:30. Then we find the name
of the machine on which the event occurred: here darkstar or cecile. Follows the name
of the service that emitted the event, for instance syslogd or sendmail. Optionally, the pid
of the latter process is shown between square brackets ([103] on the sendmail line), then
a colon followed by a free form message such as “exiting on signal 15” or the more
exotic “NOQUEUE: SYSERR(root): /etc/sendmail.cf: line 0: cannot open:
No such file or directory”.

The linuxreadlog executable in the log � eaver distribution is the preprocessor for files
obeying this format. Don’t try to call it yourself! (Unless you know what you are doing.) All
preprocessors, whose names end in readlog by convention, are only meant to be called by
logw.

Every log reader translates logs into sequences of records that logw can work on. The
linuxreadlog log reader translates lines as shown in Figure 3 into records with a date
field, which is a time value, a pid field, which is an integer (��� is not present), and machine,
program, comment fields that are just strings. In fact, linuxreadlog also adds an integer
line field so as to help logw keep track of line numbers. For example, linuxreadlog will
provide logw the sequence of records shown in Figure 4, given the lines of Figure 3. (We have
used ellipses 	�
�
�
� to abbreviate parts of strings that are too long to fit on one line.) These records
are transmitted in a simple binary format described in Section 7.

5

mouse_problems {
.comment "mouse", .machine mach, .program prog,

.line line1, .date date1;
.comment "mouse", .machine mach, .program prog,

.line line2, .date date2;
}

Figure 5: The mouse problems rule

3.2 Basic Record Matching

Now look at the t_mouse1.c file in the log � eaver distribution (see Figure 5). Although this
looks like a C file, it is not: it is a signature file. The reason why its name ends in C is that the
syntax of signatures is close enough to C that indenting mechanisms designed for C work on
log � eaver signatures.

The t_mouse1.c file declares one signature, or rule, called mouse_problems. The
first line of its body only matches records whose comment field contains the word mouse, and
stores its machine field into variable mach, its program field into variable prog, its line
field into variable line1, and its date field into variable date1. Well, giving variable names

� (e.g., mach, prog) does not exactly store values in � . Rather, it stores the value in � if � did
not have any yet, otherwise it compares the value with the one � already had, and fails if they are
not identical. Call this operation match-or-store.

Note that .comment "mouse" does not mean that the comment should be the string
mouse, but that it should contain it as a substring. In fact, writing:

. � field-name � � variable-name � � regular-expression �
asks for finding whether field � field-name � contains a substring that matches the given � regular-
expression � , if any, and if so match-or-stores it into � variable-name � (if any). (Both the
variable name and the regular expression are optional.) So for example .comment c
"Init.*(bus|PS).*mouse.*fail"will match any comment field that contains Init,
followed by any number of characters, followed by either bus or PS, then by mouse a bit fur-
ther away, and then fail. If matching succeeds, it will match-or-store the whole comment field
into variable c. This way, we can keep only those messages where bus mice or PS/2 mice, but
not serial mice, are reported to have failed some initialisation process.

In general, there is a seldom-used extension to this syntax which allows one to get back parts
of the field that the regular expression matched. For example, writing :

.comment c "Init.*(bus|PS).*mouse.*fail" { mousetype = "\\1" }

will in addition match-or-store that part of the comment that matched the (bus|PS) part of the
regular expression into mousetype. In general, \\1, . . . , \\9 match the substring matched by
the first, . . . , the ninth regular subexpression enclosed in parentheses. These features are those
offered in Henry Spencer’s regexp package, which was included in log � eaver [Spe86].

6

3.3 Matching Rules

Whenever log � eaver has matched the first line of mouse_problems against some record in
the log, it will look for a subsequent record matching the second line of mouse_problems.
This second line again asks for a record with a comment field containing mouse, with a line
field that it will store into variable line2, a date field that it will store into date2; it must
also have a machine field whose value, stored in mach, equals the one we have already gotten
in matching the first line; it must also have the same program field than when matching the
first line. This is where match-or-storing is important : the first time .machine mach is met,
log � eaver stores its machine field into mach, the second time it compares its machine field
with the value stored in mach.

Match-or-storing may seem like a strange concept. It is just an operational explanation of
a concept that is actually simpler when you put it formally, but has a less clear operational
reading. The idea is that log � eaver really only looks for pairs of records matching both lines of
mouse_problems, looking at the same time for values of the mach, prog and other variables
that will make matching successful.

Other variables are useful for reporting. Run log � eaver with signature file t_mouse1.c
on log syslog by typing:

logw -llinuxreadlog -st_mouse1.c syslog

You should get the output shown in Figure 6. (If not, consult Section 8.)

mouse_problems: mach=cecile line2=47 line1=33 prog=insmod
date2=Sun Jan 28 10:36:47 2001 date1=Sat Jan 27 13:51:39 2001

mouse_problems: mach=cecile line2=61 line1=47 prog=insmod
date2=Mon Jan 29 08:32:28 2001 date1=Sun Jan 28 10:36:47 2001

mouse_problems: mach=cecile line2=75 line1=61 prog=insmod
date2=Tue Jan 30 07:27:40 2001 date1=Mon Jan 29 08:32:28 2001

mouse_problems: mach=cecile line2=89 line1=75 prog=insmod
date2=Wed Jan 31 10:28:00 2001 date1=Tue Jan 30 07:27:40 2001

mouse_problems: mach=cecile line2=103 line1=89 prog=insmod
date2=Thu Feb 1 15:30:03 2001 date1=Wed Jan 31 10:28:00 2001

Figure 6: Results of mouse problems on syslog

Figure 6 shows 5 matches of rule mouse_problems. If you look at syslog, you’ll re-
alize that there are 6 lines where the string mouse occurs, corresponding to 6 “initialisation of
busmouse” problems. These are lines 33, 47, 61, 75, 89, 103. Accordingly, log � eaver reports
5 pairs of lines matching mouse_problems, namely 33–47, 47–61, 61–75, 75–89, 89–103.
Notice how the extraneous line field provided by the log reader was used to collect line num-
bers into variables line1 and line2, and how log � eaver reports their values in successful
matches.

7

mouse_problems synchronized(mach,prog) {
.comment "mouse", .machine mach, .program prog,

.line line1, .date date1;
.comment "mouse", .machine mach, .program prog,

.line line2, .date date2;
}

Figure 7: The refined mouse problems rule

3.4 Managing Overlaps: Shortest Matches, Synchronization

However, most of these line pairs are redundant in that they overlap. For example, we might not
be interested in knowing that there is an overlap between lines 47 and 61, since there is already
an overlap between 33 and 47. This is redundant here because each of these lines must match
with the same machine and program fields. In general, if you look for repeats of some event�

in a log, and
�

occurs at lines ��� , ��� , . . . , ��� , you shall get reports of matches ��� – ��� , ��� – ��	 , . . . ,
����
�� – ��� . Notice that this is already better than reporting all possible pairs of matches : in the
mouse_problems above, reporting all pairs would also report on lines 33–61, 33–75, 33–89,
33–103, 47–75, 47–89, 47–103, 61–89, 61–103 and 75–103, which would be too much indeed,
and completely uninformative. The reason is that log � eaver only reports on shortest matches:
once 33–47 has been reported, attempts at reporting any other match between line 33 and some
line later than 47 are silently abandoned.

One way to refine this a bit further is by requiring that no two reported matches of
mouse_problems intersect, i.e., if mouse_problems matches from line to � , and also
from � to � , we require that 	����� �� 	������ ���� . More precisely, we may require that no two re-
ported matches of mouse_problems with the same values of mach and prog intersect. The
synchronized keyword then helps: defining a rule by adding the synchronized (� � ,
. . . , � �) declaration after its name tells log � eaver to only report on matches of the rule that do
not intersect in case the variables � � , . . . , � � received the same values. For instance, running the
refined mouse_problems rule of Figure 7 with the command line :

logw -llinuxreadlog -st_mouse2.c syslog

yields the results shown in Figure 8.

mouse_problems: mach=cecile line2=47 line1=33 prog=insmod
date2=Sun Jan 28 10:36:47 2001 date1=Sat Jan 27 13:51:39 2001

mouse_problems: mach=cecile line2=75 line1=61 prog=insmod
date2=Tue Jan 30 07:27:40 2001 date1=Mon Jan 29 08:32:28 2001

mouse_problems: mach=cecile line2=103 line1=89 prog=insmod
date2=Thu Feb 1 15:30:03 2001 date1=Wed Jan 31 10:28:00 2001

Figure 8: Results with the refined mouse problems rule

8

3.5 Refining Rules with Constraints

We have seen in Section 3 how to write rules that mentioned a sequence of record patterns
to be matched sequentially. Until now, rules were given by a name, optionally followed by a
synchronized declaration, followed by a block (enclosed in curly braces), i.e., a sequence of
record-matching statements terminated by semicolons (;). The semicolon has a precise meaning
in log � eaver: if there is any other record-matching statement after the semicolon, this means
“then, later”, i.e., matching a rule � ����� ����
�
�
���� ��� means finding some line ��� where � � matches,
some line ����� � � where � � matches (with the same values of the variables), . . . , and finally some
line � �	� ����
�� where � � matches (with the same values of the variables).

bad_authentication synchronized(mach,uid) {
.machine mach, .program "ˆPAM_pwdb$", .line line1, .date date1,

.comment "authentic.*fail.*uid=([0-9]+)" { uid="\\1" };
.machine mach, .program "ˆPAM_pwdb$", .line line2, .date date2,

.comment "authentic.*fail.*uid=([0-9]+)" { uid="\\1" }
| (date2 <= date1+3600);

}

Figure 9: Detecting two failed logins within one hour

Our mouse problem example is not really convincing, so let’s consider the task of finding
cases where somebody tried to login twice from the same account, and it failed twice within one
hour. You can write it as in Figure 9 on Red Hat Linux (see file t_auth1.c). Note that we
require that the program be exactly PAM_pwdb each time: the ˆ caret symbol only matches at
the beginning of the field, while the $ dollar symbol only matches at the end of the field, so
ˆPAM_pwdb$ only matches the string “PAM_pwdb”.

The complex regular expression used for both comment fields is meant to match comments
in lines like the following (see the messages.4 file in the distribution) :

Feb 9 16:54:11 abaca PAM_pwdb[2732]: authentication failure;
(uid=500) -> root for su service

Note how the \\1 trick allows us to get back the value of the uid variable. By the way,
although uid will contain the string “500” here, it is perfectly legal to use it as an integer.
log � eaver, like Perl, automatically converts strings, integers, and dates as needed.

Finally, observe that we have used a constraint date2 <= date1+3600 in the second
line of the bad_authentication rule. This allows us to only consider pairs of failed au-
thentication attempts (by the same user uid) that fall within one hour (recall that
���� is the
number of seconds in one hour: date1, as a date, is first converted to an integer number of
seconds, then
���� is added, and date2 converted to a number of seconds is then compared to
the result).

Running this against the messages.4 file as follows :

logw -llinuxreadlog -st_auth1.c messages.4

9

shows the message of Figure 10. Observe that there is another failed login attempt in
messages.4, which was not considered because it was not followed within one hour with
another login failure from the same user.

bad_authentication: mach=abaca line2=1264 line1=1263 uid=500
date2=Fri Feb 9 16:54:15 2001
date1=Fri Feb 9 16:54:11 2001

Figure 10: Results of t auth1.c against messages.4

Using date constraints is also beneficial in that they help log � eaver reduce its memory
consumption, at least in theory, and there is a caveat. For example, if you write a constraint of
the form:

date2 <= "Sat Jun 30 21:49:08 2001"

then once log � eaver reaches a line dated after Saturday June 30th 2001, 21:49:08, it will
recognize that it is too late to match this line and therefore any later line. In this case, it will quit
trying to match the corresponding rule. (Note that log � eaver will convert the date string into
the proper date automatically—but you have to adhere strictly to the ctime format: day of the
week, then month [required], day of the month [required], time in the form HH:MM:SS and year.)
The reason why log � eaver knows that when it is too late, it will be too late forever is that in
the syslog format, as preprocessed by linuxreadlog, the date field is assumed to always
increase, never decrease. Technically, this is due to linuxreadlog informing log � eaver
that date fields have type T (monotonically increasing time values): see Section 7.

This also works with constraints of the form date2 <= date1+3600, such as in Fig-
ure 9, which are more useful: when the first line was matched, the value of date1 was
recorded, and if date2 starts being too late in the second line (i.e., date2 is greater than
date1 plus one hour), then log � eaver will realize there is no point in looking for a match of
bad_authentication starting from date1.

However, there is a caveat. . . in fact, log � eaver won’t realize this in most cases: the con-
straint date2 <= date1+3600 is only evaluated when the record pattern that precedes it
matches. So, in the example of Figure 9, log � eaver won’t even evaluate the constraint on lines
that have a program field other than PAM_pwdb, or that have a comment field that does not
match the given regular expression. If no line matches the record pattern, log � eaver will never
quit monitoring this rule, even though dates might grow arbitrarily.

The proper way to solve these problems is to write the rule as in Figure 11. This uses a
slightly different record pattern as before (Section 3.2), of the form:

. � field-name � � variable-name � � op � � expression �
where ��� is ==, !=, <=, <, >=, or >. The � expression � should be only mention variables that
already have values from matches in previous lines. Anyway, if you use variables that don’t have
values from matches in previous lines, log � eaver will reject your rule with an error message.

10

bad_authentication synchronized(mach,uid) {
.machine mach, .program "ˆPAM_pwdb$", .line line1, .date date1,

.comment "authentic.*fail.*uid=([0-9]+)" { uid="\\1" };
.date date2 <= date1+3600,

.machine mach, .program "ˆPAM_pwdb$", .line line2,

.comment "authentic.*fail.*uid=([0-9]+)" { uid="\\1" };
}

Figure 11: Detecting two failed logins within one hour, making sure time windows are obeyed

As an application of the remarks above, observe that it is important to put the .date
date2 <= date1+3600 pattern first in the second pattern of rule bad_authentication
if you wish to have log � eaver quit monitoring this rule as soon as dates are too late, not waiting
to match the machine, program, line and comment fields first.

Try the following, and compare with our previous use of t_auth1.c:

logw -llinuxreadlog -st_auth2.c messages.4

This should take approximately as long as before. However, the difference should be clear when
failed authentication events are more frequent, in which case t_auth2.c will be faster. (For
experts: you may compare the number of active threads in each case by issuing the -v command-
line option—verbose—and exploring the resulting trace file. See e.g. Question 8.7 in Section 8.)

4 Going Further: Loops, Flexible Variables, Checkpointing,
and All That

It is often awkward to specify repetitions of events by repeating lines. With what we have seen
of log � eaver until now, the only way to check whether some event � occurs 42 times, is to
write � ��� ��

�
���� with 42 � s. Fortunately, log � eaver provides a loop mechanism to alleviate
this problem.

4.1 Repeated Modprobe Problems in Linux

repeated_modprobe_problems synchronized(mach) {
while (loop: _$loop<=3) {
.machine mach, .program "ˆmodprobe$", .line $line;

}
}

Figure 12: Detecting three consecutive modprobe related problems

11

Consider for example the repeated_modprobe_problems rule of Figure 12, which is
meant to operate on Linux syslog files—that is, we shall use the linuxreadlog preproces-
sor. The line inside the while loop matches any line such that the program field is exactly
modprobe, and gets the machine name in the variable mach. The new features in this rule are
the funny variable name $line, the even funnier variable _$loop, the loop label, and the
while loop. We now explain all of them.

The $line is an example of a flexible variable. Until now, all variables were rigid: once
they get a value, they keep it forever; that is, rigid variables have one and only one value that
does not change through time. On the contrary, flexible variables have values that evolve through
time.

In log � eaver, flexible variables start with a dollar ($) sign, possibly preceded by under-
scores (_), while rigid variables start with a letter.

In the example of Figure 12, each run through the loop body should match a new line with
the same machine field (the mach variable is rigid), but with varying line fields (the $line
variable is flexible).

The value of a flexible variable such as $line is the last value it got. If it did not have
any yet, and depending on whether you wish to use $line as a number, a date, or a string,
using $line will return , the epoch (i.e., the origin of time on your operating system; on Unix
systems, this is Jan 1 00:00:00 UTC 1970), or the empty string.

Although the current value of any flexible variable is the last one it got through pattern-
matching, log � eaver keeps the full history of its past values. (Except for some, see below.)
This is for reporting reasons. Consider again the repeated_modprobe_problems rule of
Figure 12. This is in file t_modprobe1.c; try it on the syslog file, typing:

logw -llinuxreadlog -st_modprobe1.c syslog

The results you should get are shown on Figure 13. As you can see by looking at the first
line of the report, the reported values for the $line flexible variable are lines 1, 2, and 3. This
allows you to know which were the matching lines.

The flexible variables whose name start with an underscore (_) are a bit special, in that
log � eaver does not keep the history of their past values. For example, the _$loop does not
have three values: only its final value � is reported in Figure 13.

What is this variable _$loop anyway? The idea is that since there is a label loop,
log � eaver automatically maintains a counter variable _$loop, which is a special kind of
flexible variable that counts how many times it has been through that label. In effect, writing:

while (loop: _$loop<= ��� �) ...

says: loop � times through the while loop. More precisely, initially _$loop is not initial-
ized, and is therefore converted to . Once control reaches the loop label, that is, just before
log � eaver tries to evaluate _$loop<= ��� � , _$loop is incremented by one. At the next turn
through the loop, _$loop will be incremented to two, then to three, then to four, and here the
test _$loop<= ��� � fails (when � �
), so it has gone three times through the loop. (This is also
why _$loop is printed as � in the end, since this is the value it has when the loop exits.)

12

repeated_modprobe_problems: mach=darkstar _$loop=4 $line=1,2,3
repeated_modprobe_problems: mach=darkstar _$loop=4 $line=4,4,4
repeated_modprobe_problems: mach=darkstar _$loop=4 $line=4,4,4
repeated_modprobe_problems: mach=darkstar _$loop=4 $line=4,5,6
repeated_modprobe_problems: mach=darkstar _$loop=4 $line=7,8,8
repeated_modprobe_problems: mach=darkstar _$loop=4 $line=8,8,8
repeated_modprobe_problems: mach=darkstar _$loop=4 $line=8,8,15
repeated_modprobe_problems: mach=darkstar _$loop=4 $line=16,17,18
repeated_modprobe_problems: mach=darkstar _$loop=4 $line=18,18,18
repeated_modprobe_problems: mach=darkstar _$loop=4 $line=18,18,18
repeated_modprobe_problems: mach=darkstar _$loop=4 $line=19,20,21
repeated_modprobe_problems: mach=darkstar _$loop=4 $line=22,22,22
repeated_modprobe_problems: mach=darkstar _$loop=4 $line=22,22,22
repeated_modprobe_problems: mach=darkstar _$loop=4 $line=22,24,25
repeated_modprobe_problems: mach=darkstar _$loop=4 $line=26,27,27
repeated_modprobe_problems: mach=darkstar _$loop=4 $line=27,27,27
repeated_modprobe_problems: mach=cecile _$loop=4 $line=127,128,376
repeated_modprobe_problems: mach=cecile _$loop=4 $line=377,379,380
repeated_modprobe_problems: mach=cecile _$loop=4 $line=381,382,383
repeated_modprobe_problems: mach=cecile _$loop=4 $line=407,408,747
repeated_modprobe_problems: mach=cecile _$loop=4 $line=748,748,1020
repeated_modprobe_problems: mach=cecile _$loop=4 $line=1021,1022,1240
repeated_modprobe_problems: mach=cecile _$loop=4 $line=1241,1241,1241
repeated_modprobe_problems: mach=cecile _$loop=4 $line=1242,1242,1323
repeated_modprobe_problems: mach=cecile _$loop=4 $line=1496,1501,1502

Figure 13: Results of t modprobe1.c against syslog

You may wonder why the second line of Figure 13 reports three times the same line number:
4, 4, and 4. This is not a bug. In fact, if you look at the contents of the syslog file, you shall
see that although line 3 is perfectly normal:

Jan 26 19:36:06 darkstar modprobe: Can’t locate module block-major-8

line 4 is an abbreviation for seven repeats of this line:

Jan 26 19:36:09 darkstar last message repeated 7 times

The linuxreadlog preprocessor takes this as an indication that it should output seven times
the contents of line 3, but all these repeats have the same line number, namely 4. This is why
log � eaver outputs the seemingly strange $line=4,4,4 result of line 2 of Figure 13.

4.2 Counting, Accumulating Information

Until now, we have always let log � eaver look for well-defined sequences of events. Once a
matching sequence is found, it is reported. For example, count 42 events � , then report where

13

these 42 were found. However, it is often useful to take a log, and report how many events �
occurred.

Let us take the example of the log nwcnx.ulm.cg. This is an edited version of a log
for Evidian’s Netwall firewall, monitoring IP traffic. Ignoring the first three records, the rest is
comprised of a lists of all IP packets over some network from October 28th, 1999, 09:03:24 to
October 29th, 1999, 23:36:46 (line 31095), and from November 2nd, 1999, 03:20:22 to 03:54:16.
Record format is made of several � label � data � fields, dates are in YYYYMMDDHHMMSS
format, e.g. 19991029233627 is October 29th, 1999, 23:36:27. The proper preprocessor is
nwreadlog.

probing_attack synchronized (source) anchored {
while (loop: true) {
.ACTION==0, .SRC source, .DST $dest, .line $line

| ($dest =˜ "ˆclio");
|| <<EOF>>; return | (_$loop>100);

}
}

Figure 14: Detecting probing attacks on clio*

First look at the t_nw2.c file, whose contents is shown in Figure 14. The purpose of the
probing_attack rule is to detect attacks where the same source address sends packets
to all sorts of destination addresses (collected in $dest). Only attacks where the same source
sends at least � � packets should be reported, and we wish to only consider these packets sent
to some machine whose name starts with clio. (Imagine clio_1, clio_r12, clio_a2,
. . . , are particularly sensitive machines.) On the other hand, we don’t want to be warned as soon
as log � eaver detects � � messages from the same source to sensitive destinations. Rather,
log � eaver should proceed to the end of file, still counting, and only then report the incriminated
source, the list of all destinations $dest, and the list of matching lines $line.

This is what the rule of Figure 14 accomplishes. Try it by issuing the command:

logw -lnwreadlog -st_nw2.c -e nwcnx.ulm.cg

This will churn a while, then output exactly one attack, of the form:

probing_attack: source=frec _$loop=115
$dest=clio_safe,clio_safe,...
$line=476,510,18720,...

where we have used ellipses to abbreviate long series of (115) machine names or line num-
bers.

There are, again, several new features in this example. (We shall explain them in this section,
and in Section 4.3.) In order of appearance, they are: the anchored keyword, the =˜ operator,
the || alternative, the <<EOF>> pattern, the return instruction, and the -e option to logw.
Moreover, you may have noticed that log � eaver issued a few warning messages while reading
the nwcnx.ulm.cg file:

14

nwreadlog: unknown field name USER, line 1.
nwreadlog: unknown field name USER, line 2.
nwreadlog: unknown field name USER, line 3.
nwreadlog: unknown field name SRC.PORHOST, line 31095.

Actually, these are warnings issued by the nwreadlog preprocessor, which could not parse
lines 1, 2, 3, and 31095. In those cases, preprocessors merely ignore the faulty lines, and go on
to the next. We don’t care about the first three lines. Line 31095 is more interesting: it actually
results from the loss of part of the log, which was truncated in the middle of line 31095 (in the
middle of a SRC.PORT= field), then the log resumes at a new line (HOST= etc.): this results
in line 31095 being garbled. log � eaver, or rather its preprocessor, survives such format errors
and ignores the malformed line 31095 altogether.

Let us now explain what all the other new constructions are for. The =˜ operator is Perl’s
regular expression matching operator: $dest =˜ "ˆclio" means that we constrain $dest
to match the regular expression ˆclio, that is, to start with the four letters “clio”. As in Perl,
there is an operator for not matching, !˜. Since ! is negation, $dest !˜ "ˆclio" is equiva-
lent to !($dest =˜ "ˆclio"). Constraints may actually appeal to much more sophisticated
regular expression matching; the switch expression may be used in more complex cases, e.g.:

... | (switch ($dest) {
case "ˆclio": true
case "net[_a-z]*([0-9]+)" { _net = "\\1" }: (_net!=$net)
default: false

})

This would match provided $dest either starts with “clio”; or it does not but it contains
“net” followed by a few letters or underscores, then by a number, and this number (which we
get back in the local variable _net) should not be the same as the one currently in the flexible
variable $net (imagining we are using $net someplace else in the rule). Note the use of local
variables, whose names start with an underscore, and denote temporary variables whose scope
does not exceed the case branch where they are defined.

So the first line of the while loop tries to match records with the same SRC field and
possibly different DST fields, provided the latter does not start with “clio”. The <<EOF>>
pattern, on the other hand, only matches end of files, and || is the committed choice operator:
writing � pattern-1 � ; � action-1 � || � pattern-2 � ; � action-2 � means we are looking for some record
that matches � pattern-1 � (then we proceed to the sequence � action-1 � of instructions), or that does
not match � pattern-1 � but does match � pattern-2 � (then we proceed to � action-2 �). As a result,
the body of the while loop in rule probing_attack does one of three things: it matches a
record with the same SRC field each time, and a DST field that does not start with “clio”, then
it proceeds to the start of the loop again (� action-1 � is empty); or it matches the end of file, then it
does return | (_$loop>100); or it ignores the current record and waits for one that falls
in one of the previous two cases.

The return instruction exits the rule and accepts: when a rule accepts, log � eaver reports
the values of variables. This used to be implicit in our previous examples: when control reaches
the end of a rule, as in C, log � eaver implicitly does a return. The _$loop>100 is, as

15

before, a constraint: return is only executed provided the value of the loop counter _$loop
exceeds 100, that is, provided we went at least � � times through the start of the while loop
(labeled by loop:). And indeed we go once through loop: to enter the loop, then once more
each time we match a record in the first line. So if we matched � � times the first line of the body
of the while loop, _$loop will be � � at the time control reaches the return statement. If
we reach the end of file, but _$loop is � � � , then return is not executed, and as no other
instruction can be executed, probing_attack just fails silently, not reporting any attack.

Finally, the anchored keyword is a kludge, resembling Prolog’s cut. In principle,
it is not really needed, and you may check this by removing the anchored keyword in
probing_attack (see file t_nw2_na.c for instance). You may check that the presence or
absence of anchored gives the same result by launching log � eaver on nwcnx1.ulm.cg
with or without the anchored keyword. However the version without anchored is slower
and uses more memory, sometimes inacceptably more. The deep reasons are explained in Sec-
tion 5.4.

Without going into details, the main thing to know is that, in general, you should not use
anchored. Using anchored improperly may indeed contribute to masking real attacks,
which will then go undetected (see Section 5.4 for an illustration.) Moreover, the increase in
efficiency afforded by anchored is not always decisove. The anchored keyword is however
sometimes useful, in cases of signatures that are meant to count or filter some sequence of events
from the start to the end of the log, like probing_attack for example, as opposed to signa-
tures that try to find matches in the middle of logs like mouse_problems. If log � eaver is
too slow, you may want to use the anchored option, and check that it yields the same result
as without the anchored option, but faster. If this does not solve your efficiency problem, see
Question 8.6.

4.3 Modes of Operation, End of Files, Streaming and Checkpointing

Note that using the <<EOF>> pattern is required to have log � eaver report anything at all. If
we had just written:

probing_attack synchronized (source) anchored {
while (loop: true) {
.ACTION==0, .SRC source, .DST $dest, .line $line

| ($dest =˜ "ˆclio");
}

}

log � eaver would never had had a chance of getting outside of the loop and returning. In
fact, it would just collect matching lines, to no avail.

This leads us to explain how log � eaver deals with logs, what end of files mean to
log � eaver, and why we used the -e option.

In its default mode of operation (without the -e option), log � eaver takes a log and consid-
ers it as an unfinished sequence of events: once it reaches the end of file, log � eaver saves its
internal state and exits. This allows log � eaver to be relaunched: once the log has grown again,

16

relaunch logw with the -r (recovery) option, then log � eaver will resume work exactly where
it had stopped. (This should not be used when the log may grow while log � eaver analyzes
it, because log � eaver may see the end of file while being in the middle of a record: then it
will fail to parse this record and simply ignore it.) In fact, log � eaver checkpoints its state not
only when it reaches the end of file, but also when you interrupt it with control-C, and at regular
intervals; see below.

In this default mode of operation, no log � eaver rule may ever match an end of file
(<<EOF>>). This is because an end of file is just taken by log � eaver as an indication that
there might be further records in the log later on, but they are not there yet.

If you use the -e option, then on encountering the end of file, log � eaver will insert a fake
empty record in the stream of records. This is the record that <<EOF>> matches. Providing the
-e option therefore enables <<EOF>> to be matched at all. In the probing_attack rule,
this allows log � eaver to dump reports on accumulated information on current attacks. The -e
option is particularly useful for offline auditing.

Another variation on the theme of end of files is provided by the -b option. If you provide it
to logw, then, instead of checkpointing its state and returning at the end of the log, log � eaver
will wait (forever) for the log to fill in. (This implements streaming, where events are dealt with
as they arrive, and correlations are reported as soon as they are complete.) Each time new records
come in, log � eaver will do a bit more work. Just giving the -b option is therefore ideally suited
to online auditing tasks, using attacks such as those of Sections 3 or 4.1. Using both -b and -e
is meaningless, and will work just as though only -b had been provided to logw.

Let us explain how log � eaver deals with checkpointing in a more precise way. By default,
log � eaver checkpoints its internal state regularly, every 10 seconds. This can be changed by
using the -d option; e.g., using -d60 will force checkpoints to occur only every minute. The
checkpoint file is named logweave.ckp by default, and is stored in the current directory from
which you launched log � eaver. The name of the checkpoint file can also be changed, using
the -c option; e.g., using -cmyfile will checkpoint into myfile.ckp. log � eaver also
checkpoints when it is stopped by typing control-C or sending log � eaver one of the signals
SIGINT, SIGQUIT, SIGHUP, or SIGALRM (on Unix).

It also simultaneously checkpoints the current state of all active rules (see Question 8.5,
Section 8) in a file called logweave_ckp.c (or myfile_ckp.c if you used the -cmyfile
option).

To recover, relaunch log � eaver from the same directory, with the -r option. If you used a
non-standard checkpoint file name, like myfile.ckp, you have to give the -cmyfile op-
tion again, too. You also have to give the same -s option, with the same signature file as
for your first call. If you don’t remember what this signature file was, or if rules were fed to
log � eaver through, say, a named pipe (again, see Question 8.5, Section 8), then you may use
logweave_ckp.c as signature file. However, you have to first change its name first, otherwise
log � eaver will read from it to get rules but also write into it when it checkpoints again, which
will make things messy. For example, type:

mv logweave_ckp.c myspec.c
./logw -r -l./myreadlog -smyspec.c mylog

17

5 How It Really Works

It is sometimes necessary to understand some of the principles behind log � eaver in certain
situations. In most cases, this is because you wrote a signature but you don’t get the results you
expected. Rather complete details are given in [RGL01], except the latter does not include any
information on how synchronized or anchored is actually implemented. Moreover, there
is a slight bug in the description of the way shortest runs, i.e., shortest matches, are discovered;
this was also a bug in the algorithm of log � eaver in versions � 2.7.

5.1 Basic Notions

The first thing you have to understand is that every signature compiles to an automaton. An
automaton is a rather abstract graph-like structure that is composed of states and transitions
between them. An example will explain the idea: let us look at how log � eaver handles the
t_mouse1.c example. This can be done by asking log � eaver to produce a trace of everything
it does, using the -v (verbose) option. Add the -vt_mouse1.trace to the command line to
get a trace in file t_mouse1.trace, as follows:

logw -llinuxreadlog -st_mouse1.c -vt_mouse1.trace syslog

Now look at the t_mouse1.trace file. This starts with the following lines, which show
log � eaver taking the mouse_problems signature into account.

* Adding rule:

mouse_problems {
.comment "mouse", .machine mach, .program prog, .line line1,

.date date1;
.comment "mouse", .machine mach, .program prog, .line line2,

.date date2;
}
mouse_problems: 2 states, start state=0.
- State 0:

0. Match .comment "mouse", .machine mach, .program prog,
.line line1, .date date1, then goto state 1.

- State 1:
0. Match .comment "mouse", .machine mach, .program prog,

.line line2, .date date2, then accept.

log � eaver first reprints the text of your signature, then shows you the automaton it com-
piled. This automaton has two states. In state 0, it is waiting for a record whose comment field
matches the regular expression "mouse", and which will match-or-store its machine field into
the mach variable, the program field into the prog variable, the line field into the line1
variable, and the date field into the date1 variable. Once it has found such a matching record,
it will proceed to state 1. Once in state 1, it will wait for a record whose comment field also

18

matches the regular expression "mouse", whose machine and program fields are the same
as for the first matching record (at line line1), and it will store its line field into line2 and
its date field into date2. Once these two records have been found, log � eaver will accept,
i.e., it will return from the signature and report the values of variables that were matched-or-
stored during the match.

The rest of the t_mouse1.trace file shows how log � eaver reads records and tests the
mouse_problems signature against them by lauching threads that travel along the automaton
above and eventually report signature matches when they reach an accept state.

So first log � eaver reads the first record of file syslog, as shown in the trace file:

==
Reading line 1.
0 active threads.
* Launching new thread monitoring rule mouse_problems,

pid=0 [goto state 0, transition 0].
* pid=0, trying to match transition 0 of state 0: does not match:.

Then it launches a new thread to monitor possible matches of rule mouse_problems start-
ing at line 1. Threads are numbered, much as processes under Unix, and the first thread that
log � eaver creates is numbered : its pid (process identifier) is . This thread proceeds to state
0 of rule mouse_problems. However, this thread expects a record whose comment field
matches the regular expression "mouse". This is not the case, as the first line is:

Jan 26 19:36:05 darkstar modprobe: Can’t locate module block-major-22

So log � eaver kills thread 0, and proceeds to next line. Similarly, log � eaver will create
threads at lines 1–33 and kill them right away.

The first line where something more interesting happens is line 33:

Jan 27 13:00:31 cecile insmod: Initialization of busmouse failed

Indeed, this is the first line where the comment field, which is everything after the last colon
(:), matches "mouse". Let us look at what log � eaver does here:

==
Reading line 33.
0 active threads.
* Launching new thread monitoring rule mouse_problems, pid=62
[goto state 0, transition 0].

* pid=62, trying to match transition 0 of state 0: OK, values now:
mach=cecile line1=33 prog=insmod date1=Sat Jan 27 13:00:31 2001
[goto state 1, transition 0].

As before, it launches a new thread, with pid 62. This time, however, the match it was
looking for succeeds. This is what the * pid=62, trying to ... line above says. As
you may check, log � eaver also recognizes that the mach variable should contain cecile,
that the value of line1 should be 33, and so on. Now it proceeds through the transition from

19

state 0 to state 1 ([goto state 1, transition 0]). State 1 will now wait for a record
matching the second line of the mouse_problems rule.

Since log � eaver has now done all it could on record 33, it reads record 34, and proceeds:

==
Reading line 34.
1 active threads.
* Launching new thread monitoring rule mouse_problems, pid=63
[goto state 0, transition 0].

* pid=62, trying to match transition 0 of state 1: does not match:
wait for next line.

* pid=63, trying to match transition 0 of state 0: does not match:.

Note that while log � eaver again launches a new thread (number 63) to monitor matches
of mouse_problems (which, by the way, gets killed right away), it also continues to ex-
ecute thread 62. The latter is waiting, at state 1, for a record matching the second line of
the mouse_problems rule. Since this does not match, log � eaver decides to reschedule
thread 62 at the subsequent record (wait for next line), leaving thread 62 at state 1.

Everything works this way until log � eaver reaches record 47:

Jan 27 13:05:33 cecile insmod: Initialization of busmouse failed

Then two things happen:

==
Reading line 47.
1 active threads.
* Launching new thread monitoring rule mouse_problems, pid=76
[goto state 0, transition 0].

* pid=62, trying to match transition 0 of state 1: OK, values now:
mach=cecile line2=47 line1=33 prog=insmod
date2=Sat Jan 27 13:05:33 2001 date1=Sat Jan 27 13:00:31 2001

accept! [kill pid 62].
* pid=76, trying to match transition 0 of state 0: OK, values now:
mach=cecile line1=47 prog=insmod date1=Sat Jan 27 13:05:33 2001

[goto state 1, transition 0].

First, log � eaver again tries to make thread 62 advance. This times, this works: the tran-
sition from state 1 to the accept state matches, enriching the set of values that thread 62 has
got. Now it knows line2=47, in particular. Since thread 62 accepts, i.e., returns, log � eaver
reports all values, printing the following to stdout:

mouse_problems: mach=cecile line2=47 line1=33 prog=insmod
date2=Sat Jan 27 13:05:33 2001 date1=Sat Jan 27 13:00:31 2001

Now that thread 62 has returned, it is reclaimed, and won’t run on later records.
The second thing that log � eaver does on record 47 is launch a new thread, as usual. This

is thread 76 here, and it proceeds along the transition from state 0 to state 1, preparing for a new
match of rule mouse_problems.

20

5.2 Thread Management

As the previous section has shown, log � eaver creates and runs threads in parallel. Less ob-
vious is the fact that each thread is actually non-deterministic as well. Consider the example of
Figure 15 (file t_setuid1.c).

setuid_attack synchronized(M,user) {
.line $line, .HOST M, .PROG "ˆcp$", .SRC "sh$",
.DST file "ˆ/usr/spool/mail/(.*)$" { victim = "\\1" },
.RULE user;

again:
.line $line, .HOST M, .PROG "ˆset.*id$", .SRC file, .RULE user;
{
.line $line, .HOST M, .PROG "ˆclr.*id$", .SRC file, .RULE user;

goto again;
| .line $line, .HOST M, .PROG "mail", .SRC file, .DST victim;

}
}

Figure 15: The setuid1 example

This is meant to detect a mail attack where the attacker first copies, using the Unix cp utility,
a shell (detected as some file whose name ends in sh) to some file in the /usr/spool/mail/
hierarchy, where unread mails are stored. Then the attacker sets the effective user id bit of the
file, or its effective group id bit. Then either it clears the bit and sets the bit again, and so on, or it
sends a mail to the owner victim. (This is a rough version of an old attack which allowed one
to get a root shell from any user account.)

Run the t_setuid1.c file against the toy example mailattack2:

logw -l nwreadlog -s t_setuid1.c -v t_setuid1.trace mailattack2

The trace file t_setuid1.trace shows the resulting automaton:

setuid_attack: 4 states, start state=0.
- State 0:

0. Match .line $line, .HOST M, .PROG "ˆcp$", .SRC "sh$",
.DST file "ˆ/usr/spool/mail/(.*)$" { victim="\\1" },
.RULE user, then goto state 1.

- State 1 (label _$again):
0. Match .line $line, .HOST M, .PROG "ˆset.*id$", .SRC file,

.RULE user, then goto state 2.
- State 2:

0. Match .line $line, .HOST M, .PROG "mail", .SRC file,
.DST victim, then accept.

1. Match .line $line, .HOST M, .PROG "ˆclr.*id$", .SRC file,
.RULE user, then goto state 3.

21

- State 3:
0. goto state 1.

Compared with the example of Section 5.1, this automaton shows two differences. The first
one is that label again gives rise to the counter variable _$again, which will be incremented
each time a thread running along this automaton comes to state 1. The second one is that there
are now two transitions going out of state 2, one that leads to acceptance (transition 0), one that
goes to state 3 (transition 1).

As in previous section, log � eaver launches a thread (pid 0) to detect the mail attack:

==
Reading line 1.
0 active threads.
* Launching new thread monitoring rule setuid_attack, pid=0
[goto state 0, transition 0].

* pid=0, trying to match transition 0 of state 0: OK, values now:
M=abaca file=/usr/spool/mail/root $line=1 user=Joe victim=root
[goto state 1, transition 0].

This matches the first record, which indeed is a copy of a shell to
/usr/spool/mail/root:

HOST=abaca PROG=cp SRC=/bin/bash DST=/usr/spool/mail/root RULE=Joe

Once thread 0 has matched this copying record, it proceeds to state 1:

==
Reading line 2.
1 active threads.
* Launching new thread monitoring rule setuid_attack, pid=1
[goto state 0, transition 0].

* pid=0, trying to match transition 0 of state 1: OK, values now:
M=abaca _$again=1 file=/usr/spool/mail/root $line=1,2 user=Joe
victim=root
[goto state 2, transition 0] [goto state 2, transition 1].

* pid=1, trying to match transition 0 of state 0: does not match:.

Apart from the newly launched thread 1, which gets killed immediately, what happens here
is thread 0 managing to match the transition from state 1 to 2, i.e., it finds the first setuid
action. Now there are two transitions coming out of state 2, one which is waiting for the final
mail action (transition 0), and one which is waiting for a clruid action (transition 1). Which
one is the one to follow cannot be decided by log � eaver at this point. So log � eaver does
not decide, and splits thread 0 into two copies, each with pid 0: one goes to state 2, waiting for
transition 0 to fire, the other goes to state 2, waiting for transition 1 to fire.

When log � eaver reaches record 3, there are now two threads with pid 0:

22

==
Reading line 3.
2 active threads.
* Launching new thread monitoring rule setuid_attack, pid=2
[goto state 0, transition 0].

* pid=0, trying to match transition 0 of state 2: does not match:
wait for next line.

* pid=0, trying to match transition 1 of state 2: does not match:
wait for next line.

* pid=2, trying to match transition 0 of state 0: OK, values now:
M=iroko file=/usr/spool/mail/root $line=3 user=Joe victim=root
[goto state 1, transition 0].

Furthermore, thread 2 is starting up, trying to find a match of rule setuid_attack starting
from line 3. Meanwhile, both threads 0 are rescheduled to wait for record 4.

At record 4, which is as follows: log � eaver will notice that the second thread 0, which is
waiting on transition 1 of state 2, can actually fire, whereas the first thread 0 cannot:

==
Reading line 4.
3 active threads.
* Launching new thread monitoring rule setuid_attack, pid=3
[goto state 0, transition 0].

* pid=0, trying to match transition 0 of state 2: does not match:
wait for next line.

* pid=0, trying to match transition 1 of state 2: OK, values now:
M=abaca _$again=1 file=/usr/spool/mail/root $line=1,2,4 user=Joe
victim=root
[goto state 1, transition 0].

* pid=2, trying to match transition 0 of state 1: does not match:
wait for next line.

* pid=3, trying to match transition 0 of state 0: does not match:.

Notice that thread 3 is killed right away (there is no new instance of setuid_attack
starting from line 4), while thread 2 waits at state 1 for some setuid action.

After some time, log � eaver reaches record 8, where there are now three threads 0:

==
Reading line 8.
5 active threads.
* Launching new thread monitoring rule setuid_attack, pid=7
[goto state 0, transition 0].

* pid=0, trying to match transition 0 of state 2: does not match:
wait for next line.

* pid=0, trying to match transition 1 of state 2: does not match:
wait for next line.

* pid=0, trying to match transition 0 of state 2: does not match:

23

wait for next line.
* pid=2, trying to match transition 0 of state 1: OK, values now:
M=iroko _$again=2 file=/usr/spool/mail/root $line=3,5,6,8 user=Joe
victim=root
[goto state 2, transition 0] [goto state 2, transition 1].

* pid=2, trying to match transition 0 of state 2: does not match:
wait for next line.

* pid=7, trying to match transition 0 of state 0: does not match:.

Looking at what thread 0 investigates in more detail, we may discover that, starting from
record 1, user Joe on machine abaca does a setuid at record 2, then a clruid at record 4,
a setuid at record 7 (don’t count Joe’s setuid at record 5, which occurs on iroko instead
of abaca, and will be detected by thread 2 instead), and finally a sendmail action at record 9.
At record 8, each thread 0 has seen both setuid’s and the clruid in the middle. The first
thread 0 is trying to find an attack that does record 2’s setuid, then record 4’s clruid, then
record 7’s setuid; it is currently waiting for the sendmail action. The second one is also
trying to find an attack going through records 2, 4 and 7, and is currently waiting for yet another
setuid action. The third one has gone through record 2, and chose to wait directly for the final
sendmail action. (Note that, in theory, there should be other instances of thread 0, namely
at least one that didn’t go through record 2 and record 4, but waited until record 7 to match a
setuid action. log � eaver actually recognizes that any such attack would be subsumed by the
previous ones.)

On reaching record 9, which is:

HOST=abaca PROG=sendmail SRC=/usr/spool/mail/root DST=root

log � eaver advances the first thread 0 past transition 0 of state 2 to the acceptance state:

==
Reading line 9.
6 active threads.
* Launching new thread monitoring rule setuid_attack, pid=8
[goto state 0, transition 0].

* pid=0, trying to match transition 0 of state 2: OK, values now:
M=abaca _$again=2 file=/usr/spool/mail/root $line=1,2,4,7,9
user=Joe victim=root accept!
[kill pid 0].

* pid=0 [killed].
* pid=0 [killed].
* pid=2, trying to match transition 0 of state 2: does not match:
wait for next line.

* pid=2, trying to match transition 1 of state 2: does not match:
wait for next line.

* pid=2, trying to match transition 0 of state 2: does not match:
wait for next line.

* pid=8, trying to match transition 0 of state 0: does not match:.

24

Having done so, it reports the result (see the accept! line above). More importantly, it kills
thread 0, i.e., it removes every other thread 0: remember that all copies of thread 0 were actually
different attempts to find an attack starting from record 1. Once one has been found, reporting
the others would in general only increase information glut. Precisely, it is shown in [RGL01]
that the match that log � eaver reports this way is the shortest one in a precise sense, and it is
argued that this shortest match is the one that carries the most useful information.

5.3 Synchronized Rules and Merging Pids

Let us return to the t_mouse1.c example of Section 5.1. We have seen in Section 3.2 that
this was not completely satisfying. This is why we introduced the synchronized keyword in
Section 3.4. Consider the t_mouse2.c example, which only differs from t_mouse1.c by
the fact that rule mouse_problems is now synchronized on variables mach and prog. Write:

logw -l linuxreadlog -s t_mouse2.c -v t_mouse2.trace syslog

and look at the trace file t_mouse2.trace. Compared with the trace we analyzed in
Section 5.1, the first difference occurs at record 47, on launching thread 76. Remember that
thread 76 was the new successfully launched thread trying to match rule mouse_problems
starting from record 47. Recall also that thread 62 was about to accept on reaching record 47.
Here is what the new synchronized rule mouse_problems does here:

==
Reading line 47.
1 active threads.
* Launching new thread monitoring rule mouse_problems, pid=76
[goto state 0, transition 0].

* pid=62, trying to match transition 0 of state 1: OK, values now:
mach=cecile line2=47 line1=33 prog=insmod
date2=Sat Jan 27 13:05:33 2001 date1=Sat Jan 27 13:00:31 2001
accept! [kill pid 62].

* pid=76, trying to match transition 0 of state 0:
possibly conflicts with non-anchored synchronized declaration,
changing pid to 62: [just killed].

The interesting difference is what the new thread 76 does. It matches transition 0 of state 0,
match-or-storing cecile into mach and insmod into prog. Now it recognizes that another
thread, namely thread 62, already holds a lock on rule mouse_problems with these values of
the synchronized variables. (Although thread 62 just got killed, the lock is retained until all rules
have been dealt with at record 47. Hence, technically, thread 62 still holds this lock.)

It might seem natural to think that, since thread 76 violates the synchronization condition, it
should be killed right away. However, it might be that thread 62 never accepts, while thread 76
will. In this case, we would like thread 76 to report eventually. The trick to implement this
is to merge pids 62 and 76: log � eaver changes the given occurrence of thread 76 to have
pid 62. This is another example of non-deterministic choice: log � eaver cannot decide which

25

of thread 62 or 76 will eventually succeed, so it merges their pids, leaving the decision to a later
time when one of the threads accepts.

It turns out, though, that changing thread 76 to have pid 62 means renaming thread 76 to get
the pid of a thread that just got killed, because thread 62 just accepted. The [just killed]
comment signals this: log � eaver detects that pid 62 was just killed, so thread 76 has to be
killed, too.

By the way, although setuid_attack in t_setuid1.c (Figure 15) appears to do what
we expect of it, this is not the case. Consider the following records (see file mailattack):

HOST=abaca PROG=cp SRC=/bin/bash DST=/usr/spool/mail/root RULE=Joe
HOST=abaca PROG=setuid SRC=/usr/spool/mail/root RULE=Joe
HOST=abaca PROG=clruid SRC=/usr/spool/mail/root RULE=Joe
HOST=abaca PROG=sendmail SRC=/usr/spool/mail/root DST=root

and run log � eaver:

logw -l nwreadlog -s t_setuid1.c -e mailattack

This reports the following non-existent attack:

setuid_attack: M=abaca _$again=1 file=/usr/spool/mail/root $line=1,2,4
user=Joe victim=root

You may need some time to convince yourself that this is actually a legal match of
setuid_attack. This is due to the fact that the choice operator | we use in the last line of
setuid_attack does not force log � eaver to commit to the first alternative when it matches.
Concretely, when log � eaver has matched the cp of line 1, the setuid of line 2, and come
to the clruid of line 3, it has the choice of either taking the first alternative and waiting for a
later setuid (which will never occur), or of taking the second alternative and waiting for a later
sendmail, which occurs at line 4.

In this example however we probably wish to forcibly take into account every setuid or
setuid as soon as they arrive. In other words, we require log � eaver to commit to the first
alternative when it matches, by using the committed choice operator || instead of the ordinary
choice operator |. This is file t_setuid.c, and indeed running log � eaver with the latter on
mailattack reports no attack.

5.4 Anchored Signatures

In Section 5.3 we saw that synchronized rules was implemented by merging pids. Returning
to the t_mouse2.c example, we have seen that when the possible conflict between thread 62
and thread 76 is detected, log � eaver cannot decide which of the two is going to succeed, and
therefore cannot just kill thread 76 right away. Using the anchored keyword modifies this
behavior so that log � eaver indeed kills the conflicting thread 76 instead. This is faster than the
pid merging trick of Section 5.3, but does not always leads to the same results. In particular it
may lose some valid attacks.

26

Consider for example the setuid_attack example with the anchored keyword added.
(This is file t_setuid2.c.) Now compare t_setuid1.c (without anchored) and
t_setuid2.c (with anchored) on file mailattack3:

HOST=abaca PROG=cp SRC=/bin/bash DST=/usr/spool/mail/lp RULE=Joe
HOST=abaca PROG=cp SRC=/bin/bash DST=/usr/spool/mail/root RULE=Joe
HOST=abaca PROG=setuid SRC=/usr/spool/mail/root RULE=Joe
HOST=abaca PROG=clruid SRC=/usr/spool/mail/root RULE=Joe
HOST=abaca PROG=sendmail SRC=/usr/spool/mail/root DST=root

Running t_setuid1.c produces the following valid attack:

setuid_attack: M=abaca _$again=1 file=/usr/spool/mail/root
$line=2,3,5 user=Joe victim=root

while running t_setuid2.c returns no attack whatsoever. This may be explained by look-
ing at respective traces obtained with the -v option in each case. Briefly, what happens is as
follows. In both cases, log � eaver creates a thread at record 1 to look for an attack perpetrated
by Joe on machine abaca, here against user lp. At record 2, log � eaver wishes to create a
new thread to look for an attack again perpetrated by Joe on abaca, this time against root.
Note that the attack against lp is never complete, while the attack against root eventually com-
pletes at record 5. By using anchored, as in t_setuid2.c, you force log � eaver to quit
monitoring the second attack, on the false premises that it would overlap the first attack. But
there is actually no first attack, so the only effect is to force log � eaver to overlook the only
valid attack. Looking at traces, here is what log � eaver does at record 2 when we do not use
anchored:

==
Reading line 2.
1 active threads.
* Launching new thread monitoring rule setuid_attack, pid=1
[goto state 0, transition 0].

* pid=0, trying to match transition 0 of state 1: does not match:
wait for next line.

* pid=1, trying to match transition 0 of state 0:
conflicts with anchored synchronized declaration:.

Thread 1, which is the one that would eventually succeed, is killed on the grounds that it
conflicts with thread 0.

By not using anchored, as in t_setuid1.c, log � eaver tries to detect both possible
attacks; the fact that the setuid_attack rule is synchronized on M and user, and that both
possible attacks have the same values for M and user respectively means that log � eaver would
only report one attack in case both succeeded. Looking at the trace, we would get the following
at record 2:

==
Reading line 2.
1 active threads.

27

* Launching new thread monitoring rule setuid_attack, pid=1
[goto state 0, transition 0].

* pid=0, trying to match transition 0 of state 1: does not match:
wait for next line.

* pid=1, trying to match transition 0 of state 0:
possibly conflicts with non-anchored synchronized declaration,
changing pid to 0:
OK, values now: M=abaca file=/usr/spool/mail/root $line=2

user=Joe victim=root
[goto state 1, transition 0].

which allows log � eaver to proceed and eventually report a successful attack starting at
record 2.

6 Signature Syntax

We describe here the syntax for the signature files, that is, those files that describe attack scenarios
and usually have names of the form t_whatever.c. (The syntax of logs is whatever you wish,
provided it has a preprocessor, see Section 7.)

We start with the lexical rules:

id An identifier is a letter or an underscore (_) followed by zero, one or more alphanumeric
characters. Letters are A-Z, a-z. Alphanumeric characters are A-Z, a-z, 0-9, the dot (.),
and the underscore (_.) Identifiers typically denote rule names or rigid variables.

field A field name is a dot followed by an identifier, without intervening spaces. For example,
.line is a field name, while line is an identifier.

temp-var A temp-var is a sequence of at least one dollar sign ($), followed optionally by an identi-
fier, without intervening space. For example, $line, $$, $$date are temp-vars. They
typically denote flexible variables.

local-var A local-var is a sequence of at least one underscore (_) followed by a possibly empty se-
quence of dollar signs ($), followed by an identifier. They typically denote local variables
in expressions of the form (� � ��� � ��
�
�
 � � � ��� � ���) which bind the local-vars � � to the

value of � � , . . . , � � to � � , then evaluate � .

string A string literal is enclosed in two double quotes ", and is a sequence of characters. The
backslash \ has special meaning: \n denotes a line-feed character (ASCII 10), \t a tab
(ASCII 9), \r a carriage-return (ASCII 13), \b a bell (ASCII 7), \f a form-feed (ASCII
12). Additionally, a backslash followed by 1 to 3 octal digits denotes the corresponding
ASCII code in octal; for example, \012 is synonymous with \n. Otherwise, backslash
followed by a character is just this character, so \" denotes the double-quote character.

int An integer literal is any non-empty sequence of digits 0-9, or true (denoting �), or
false (denoting). They denote integers.

28

Spaces, tabs, form-feeds, carriage-returns and line-feeds separate lexical tokens, and are other-
wise ignored during parsing. Finally, the following are reserved keywords:

anchored break case default else false
goto if int len new reject
return string substr synchronized switch time
true while && || == !=
=˜ !˜ <= >= =? sum
<<EOF>>

‘,’ right-associative
‘?’ ‘:’ left-associative
‘||’ right-associative
‘&&’ right-associative
‘|’ right-associative
‘==’ ‘!=’ not associative
‘<’ ‘>’ ‘<=’ ‘>=’ not associative
‘+’ ‘-’ left-associative
‘*’ ‘/’ ‘%’ left-associative
‘=˜’ ‘!˜’ ‘=?’ not associative
‘!’ ‘#’ ‘new’ not associative

Figure 16: Operator precedence

The syntax of signature files is given by the following grammar, which recognizes rule com-
mands (adding a rule, removing a rule) by the spec-commands production. We use the notation
	 � to denote any string matched by

�
or the empty string, 	 � �� to denote any sequence (possibly

empty) of strings matched by
�

, and 	 � �� to denote any non-empty sequence of strings matched
by

�
. The notation ‘abc’ denotes the corresponding string literal or keyword. Precedences are

as given in Figure 16, where lower operators bind more strongly than higher operators.

spec-commands ::= id [synchronized] [‘anchored’] block add a new rule�
‘-’ id remove a rule

synchronized ::= ‘synchronized’ ‘(’ var [‘,’ var] � ‘)’

var ::= id rigid variable�
temp-var flexible variable

block ::= ‘ � ’ choice ‘ � ’ instruction block

choice ::= [instruction] � sequence of instructions�
choice ‘|’ choice non-deterministic choice�
choice ‘||’ choice committed choice�
choice ‘+’ choice conjunction (both arguments should be matched,

in any order)

29

instruction ::= ‘return’ [constraint] ‘;’ accept�
‘reject’ [constraint] ‘;’ silently fail�
‘break’ [constraint] ‘;’ exit current scope�
‘goto’ id [constraint] ‘;’ branch to label�
‘if’ parenthesized-expr instruction conditional

‘else’ instruction�
‘while’ while-expr block while loop�
immediate-match [constraint] ‘;’ record patterns�
block instruction block�
id ‘:’ instruction label�
‘;’ no operation

immediate-match ::= field [id] string [regexp-bindings] string field matching�
immediate-match ‘,’ immediate-match conjonction of patterns�
field [id] [simple-constraint] � numeric field matching�
‘<<EOF>>’ matching end-of-file�
‘(’ immediate-match ‘)’

simple-constraint ::= ‘=’ expr equality constraint�
‘!=’ expr difference constraint�
‘<’ expr strict less than�
‘>’ expr strict greater than�
‘<=’ expr less than or equal to�
‘>=’ expr greater than or equal to

regexp-bindings ::= ‘ � ’ regexp-binding [‘,’ regexp-binding] � ‘ � ’
regexp-binding ::= var ‘=’ string

constraint ::= ‘|’ parenthesized-expr

parenthesized-expr ::= ‘(’ local-expr ‘)’ expression between parentheses
local-expr ::= [binding ‘,’] � expr expression with value bindings

binding ::= local-var ‘=’ expr binding a local variable to a value

30

expr ::= simple-expr atomic expression�
expr ‘&&’ expr boolean conjunction�
expr ‘||’ expr boolean disjunction�
expr ‘==’ expr equality test�
expr ‘!=’ expr difference test�
expr ‘=˜’ string regular expression matching�
expr ‘!˜’ string r.e. matching failure�
expr ‘=?’ history-expr membership test�
expr ‘<’ expr strict less than�
expr ‘<=’ expr less than or equal to�
expr ‘>’ expr strict greater than�
expr ‘>=’ expr greater than or equal to�
expr ‘+’ expr addition�
expr ‘-’ expr subtraction�
expr ‘*’ expr multiplication�
expr ‘/’ expr integer division (quotient)�
expr ‘%’ expr integer modulo (remainder)�
expr ‘?’ expr ‘:’ expr conditional

31

simple-expr ::= id rigid variable�
local-var local variable�
history-expr flexible variable

(or one of its previous values)�
string string constant�
int integer constant�
parenthesized-expr expression between ‘(’ and ‘)’�
‘switch’ expr ‘ � ’ regular expression matching

[expr-case] � [expr-default] ‘ � ’�
‘if’ parenthesized-expr conditional

simple-expr
[‘else’ simple-expr]�

‘!’ simple-expr negation�
‘#’ history-expr set cardinality�
‘-’ simple-expr minus�
‘sum’ history-expr sum of all values�
‘|’ history-expr ‘|’ list length�
‘len’ parenthesized-expr string length�
‘‘’ simple-expr previous value�
‘new’ history-expr freshness test

(succeeds if current value is not
in set of old values)�

‘substr’ ‘(’ expr ‘,’ expr substring
[‘,’ expr] ‘)’�

‘int’ parenthesized-expr conversion to integer�
‘string’ parenthesized-expr conversion to string�
‘time’ parenthesized-expr conversion to time

history-expr ::= [‘‘’] � temp-var flexible variable
(or previous value:
‘$x is the previous value of $x,
‘‘$x is the value before that, etc.)

while-expr ::= parenthesized-expr expression between parentheses�
‘(’ id ‘:’ local-expr ‘)’ . . . possibly preceded by a label

expr-case ::= ‘case’ string alternative of switch
[local-regexp-bindings] ‘:’ expr (regular expression matching)

expr-default ::= ‘default’ ‘:’ expr default alternative

local-regexp-bindings ::= ‘ � ’ local-regexp-binding
[‘,’ local-regexp-binding] � ‘ � ’

local-regexp-binding ::= local-var ‘=’ string binding a local variable

32

7 Writing Your Own Preprocessor

8 Frequently Asked Questions

8.1 I cannot manage to launch log � eaver, why?

Make sure log � eaver’s executable logw is in your current path. Also make sure that the
preprocessor you want to use (whose name typically ends in readlog) is also in your path; on
Unix systems, check your PATH variable. For security reasons, your OS may insist on excluding
your current directory from your current path. In that case, and if you are in the same directory
as all executables, instead of typing:

logw -llinuxreadlog -st_mouse1.c syslog

type:

./logw -l./linuxreadlog -st_mouse1.c syslog

8.2 log � eaver complains about . � field-name � : unknown field
name, what can I do?

This means that you ran it against a signature file that used � field-name � as a field name, but the
log you are analyzing does not have such fields. Check the spelling of your field names. Call
your preprocessor without arguments to get the list of all fields it produces (with their types, see
Section 7). For example, calling linuxreadlog returns:

line:M;date:T;pid:I;machine:A;program:A;comment:A;

meaning that there will be an integer field line that can only increase through time (type T),
a date field date that can only increase too (type T; type D is the type of dates that may vary
freely), an integer field pid (type I), and three text fields machine, program, and comment
(type A, like ASCII).

It might also be the case that you instructed log � eaver to use a preprocessor, through the -l
option, that it could not find. Since it is the responsibility of the preprocessor to tell log � eaver
which are the fields it will provide to log � eaver, with their types, failing to launch a prepro-
cessor means that no field name will be recognized.

8.3 I have written a rule, but it never detects anything, although it really
ought to, what is the matter?

There are several possible reasons to this.

� Perhaps your rule has never been taken into account by log � eaver: have you checked
whether log � eaver complained about your rule? If there was a syntax error or a semantic
error in your rule, log � eaver reports the error, and ignores the rule.

33

� Perhaps your rule was correctly formed, but it was still not taken into account: make sure
that your rule definition is followed by a control-L character (ASCII 12 = 0xc). (You may
have noticed this if you have read the example files t_mouse1.c, t_auth1.c, and
so on, that were mentioned in this manual.) You may check that this is what happen by
generating a trace file with the -v option (see Question 8.7). Let us take as example the
mouse_problems of file t_mouse1.c. Then the trace file should show a few lines
looking like:

* Adding rule:

mouse_problems synchronized(mach,prog) {
.comment "mouse", .machine mach, .program prog,

.line line1, .date date1;
.comment "mouse", .machine mach, .program prog,

.line line2, .date date2;
}
mouse_problems: 2 states, start state=0.
- State 0:

0. Match .comment "mouse", .machine mach, .program prog,
.line line1, .date date1, then goto state 1.

- State 1:
0. Match .comment "mouse", .machine mach, .program prog,

.line line2, .date date2, then accept.

This says that log � eaver correctly parsed and accepted your rule definition, and
log � eaver prints its text followed by a description of the automaton it has compiled
it to.

As said above, a typical cause for log � eaver not taking a rule into account is failing to
write control-L after the rule. The control-L character tells log � eaver that everything
preceding it is a sequence of commands: rule definitions tell log � eaver to add the cor-
responding rules, and entries of the form � � rule-name � tell log � eaver to remove rule

� rule-name � from its set of active rules.

In fact, the signature file is really a sequence of commands telling log � eaver to add or
remove rules. You may always append new commands at the end of the signature file,
but they will only be taken into account when you type control-L. This is admittedly a
kludge, and we plan to be able to dispense with this control-L trick in future versions of
log � eaver.

The purpose of all this is so that you can add or remove rules while log � eaver is running.
log � eaver starts matching newly added rules from the line it is currently reading in the
log. Removed rules won’t be triggered longer, but if log � eaver was in the process of
detecting a series of lines matching a rule and this rule gets removed, it will still try to
complete the match.

34

� Or perhaps your rule was taken into account, but it just never matched anything. Again,
this can be investigated through the use of the -v option: see Question 8.7.

8.4 My machine crashed, or the logw process got killed, while it was mon-
itoring some real-time stream of events, how do I recover from this?

Don’t panic. log � eaver checkpoints its internal state at regular points in time. You may re-
launch log � eaver with the -r option to get it running again, starting from where it stopped.
See Section 4.3 for detailed information.

8.5 Is it possible to add or remove rules from the signature file and have
log � eaver take the modifications into account?

Yes. There are actually two ways to do this. The first is to stop log � eaver (e.g., type control-C),
modify the signature file, and relaunch it with -r. Using the checkpointing mechanism (the -r
option, see Section 4.3) allows you to resume log auditing without losing any information, and
without having to reanalyze all previous lines of the log.

The second possibility is to append new commands at the end of the signature file without
stopping log � eaver. In doing this, don’t forget to add a control-L at the end: see Question 8.3.

8.6 log � eaver uses a lot of memory. What should I do?

There is no best answer to this question. Detecting complex patterns scattered across lines can
sometimes require quite a lot of time and memory. What costs most is complex patterns that
match lines very far apart, because log � eaver will have to execute many long-lived threads,
which all consume resources. In fact, complex patterns that might match lines arbitrarily far apart
but actually never match are monitored by threads that never terminate, and clog the system.

Sometimes this explosive behavior is unavoidable. Typically, if you try to find lines matching
some record pattern

�
, followed by lines matching some other pattern � , but � might match 100,

1000, or one million lines later, or never. Then log � eaver will launch a thread to try to match�
at each line, and for each line that matched

�
, the corresponding thread will wait until it

finds a line where � matches. If
�

matched 5000 times and � never matches, log � eaver will
eventually run 5000 useless threads in parallel. Using constraints on dates, as in Section 3.5,
can help relieve log � eaver by killing threads that have waited too long. You may also use
constraints on line numbers to kill threads that have waited for too many lines already. If this
does not help, see Question 8.9, or (for experts) use the -v option: see Question 8.7.

Another case where log � eaver will use a lot of memory is if you used the ordinary choice
operator |. Whenever you write something like

�
| � in a signature, log � eaver will spawn two

threads (see Section 5 on threads), one waiting for
�

, the other for � . If this is inside a loop, then
the number of threads will double at each turn of the loop, which will quickly lead to memory
saturation and drastic performance reduction. In this case, you probably in fact want to say�
|| � , where || is the committed choice operator. This is not equivalent: while

�
| � means

35

“wait for either
�

or � to happen”,
�
|| � means “if

�
holds now, then choose

�
, otherwise try

to match � ”.

8.7 I have written a rule, but it never matches, or it matches unexpected
series of lines, is there a bug in log � eaver?

While it is certainly true that log � eaver, like any complex piece of software, is likely to contain
bugs, it might be that you wrote something that actually means something else than what you
meant. For example, in versions 2.5 and before of log � eaver, you could write an instruction of
the form if (� condition �) � instruction � without an else clause. This had the effect of going to

� instruction � if � condition � held, and blocking otherwise. But most people read it as though the
failure of � condition � meant that execution would proceed to the next line.

While strange behaviors are puzzling, the -v (verbose) option to log � eaver can be used to
understand what is really going on. For example, add the -vmytrace option to the logw com-
mand line. This will produce a mytrace file containing a mostly human-readable explanation
of what log � eaver actually tried to do. You may then use this information to adapt your rules
accordingly. To understand the mytrace file, you may have to understand how log � eaver
works, though. See Section 5.

Now if you wrote a rule that never matched, look into your mytrace file. It may be that
the rule was never triggered, or that it was triggered but cannot reach an accepting state, or that
it was triggered but waits for an end-of-file indicator that will never occur, typically. The most
puzzling cases are the latter two, and happen typically with rules that try to count or accumulate
information along the whole log. (It may be a good idea to re-read Section 4.2 to understand how
you should write your rules.) For example, writing a rule with a body like:

while (loop: true) {
.field1 = "blah", ...;

|| .field1 = "foo", ...;
|| ...

}

will typically never exit the loop. On encountering the end of file, it won’t automatically exit
the loop: the true condition in the while directive does not say “while we are not at the end
of file”, rather “while true is true”, that is, forever. So you typically have to add a line matching
the end of file explicitly, say:

|| <<EOF>>; return;

meaning that end of files should be matched and then the rule should match.
Even though you may have put this <<EOF>> pattern already, your rule may still fail to

match. The typical reason is that, by default, log � eaver does not understand end of files:
to log � eaver, a log does not end, and is always in the process of being filled in. To inform
log � eaver that your log won’t grow, or at least that you would like your rules to be aware of the
existence of the end-of-file, use the -e option: on encountering the end of file, log � eaver will

36

then insert a dummy empty record that only matches the <<EOF>> pattern, therefore allowing
the || <<EOF>>; return; construction to fire.

Another example of unexpected behaviour is explained at the end of Section 5.3, where the
t_setuid1.c signature file detects false attacks because of the use of | instead of ||. There
seems to be a rule that you are in general safer in using the committed choice operator rather
than the ordinary choice operator |. Also, the latter tends to make log � eaver consume more
memory, see Question 8.6.

8.8 Why is log � eaver complaining about ifs without elses?

See Question 8.7.

8.9 I have written a constraint on dates as in Section 3.5 but log � eaver
keeps gobbling up memory. What is happening?

Basically, reread carefully Section 3.5 and understand why you should write your rule in the style
of Figure 11 instead of Figure 9. If this does not work, use the -v option: see Question 8.7.

8.10 How do I interface log � eaver with logrotate or other log rotation
mechanisms?

Good question. You almost can now, but I still have to work on it.

8.11 Is it possible to use a variable whose value will not be reported?

Yes: use a name starting with two dollar signs, e.g., $$date, $$$date, etc. Note that such
variables are always flexible. You may consult, e.g., t_nw8.c for an example.

8.12 Can I have the values of a flexible variable printed without duplica-
tions?

Regular flexible variables (e.g., $dest) print as the sequence of the values they took during a
match. If you wish to print them as a set, with every value listed exactly once, give your flexible
variable a name starting in $_. Consult t_nw8.c for an example.

8.13 Some line numbers repeat, or two instances of the same synchro-
nized rule overlap, what is the matter?

It may be the case that there are two instances of the same synchronized rule that match
records with the same line number. In this case, you will get the feeling that they overlap. This
might not be the case, though, since in some log formats, several records may share the same
line number. See the example of Figure 13, which exhibits this behavior, and read Section 4.

37

8.14 Do I need spaces after command-line options, e.g., do I write -
l./nwreadlog or -l ./nwreadlog?

There is no difference between the two, starting from version 2.8. You were only required to
leave the space off in versions 2.7 and earlier of log � eaver.

References

[Mou97] Abdelaziz Mounji. Languages And Tools for Rule-Based Distributed Intrusion De-
tection. PhD thesis, Facults Universitaires Notre-Dame de la Paix, Namur, Belgium,
September 1997.

[Pax98] V. Paxon. BRO: A system for detecting network intruders in real-time. In Proceedings
of the 7th USENIX Security Symposium, 1998.

[RGL01] Muriel Roger and Jean Goubault-Larrecq. Log auditing through model-checking. In
IEEE Computer Security Foundations Workshop XIV (CSFW’14), June 2001.

[Roe99] Martin Roesch. Snort: Lightweight intrusion detection for networks. In Proceedings of
the 13th Conference on Systems Administration (LISA’99), pages 229–238. USENIX
Associations, November 1999.

[Spe86] Henry Spencer. regexp package. Available at http://arglist.com/regex/,
1986.

38

Index
Symbols

linuxreadlog 5, 10, 12, 13
nwreadlog . 14, 15

A
accept 15, 19, 20, 24, 25
alphanumeric . 28
anchored 14, 16, 18, 26, 27
automaton . 18

C
character . 28
checkpointing 4, 11, 16, 17, 35
command-line options 4
committed choice.26, 35, 37
constraint 9, 10, 15, 16, 30, 35, 37
counter variable . 22
counter variable . 16
counting . 14

F
false positives . 3
field name . 28
flexible variable 11, 12, 28, 29, 32, 37

G
generic . 3

I
identifier . 28
integer . 28
intrusion detection . 2

K
kill . 25, 26

L
letter . 28
local variable . 28, 32
log . 3

M
match-or-store 6, 7, 18, 25

merging pids . 25

N
non-determinism. 21, 25

O
off-line auditing . 3
on-line auditing . 3
options . 4

P
parallel . 21
pid . 19, 22, 25, 26
preprocessor 3–5, 12–15, 28, 33

R
record . 5
regular expression 3, 6, 9, 10, 15, 18, 19
rigid variable 12, 29, 32
rule . 6

S
sequence . 37
set . 37
shortest match 8, 18, 25
signature . 6
signature file . 3, 28
state . 18
streaming . 3, 17
string . 28
synchronized 8, 9, 11, 14, 16, 18, 25, 26, 29,

34, 37

T
temp-var . 28
thread 11, 19–25, 27, 35
transition . 18

V
variable 6–12, 28, 32, 37
verbose . 4, 11, 18, 36

39

